Volume 23, No.1
February issue 2018
1. 最近の研究から/FROM LATEST RESEARCH
[1](株)富士通研究所 デバイス&マテリアル研究所 Devices & Materials Laboratory, Fujitsu Laboratories Ltd.、[2]富士通セミコンダクター(株) システムメモリカンパニー System Memory Company, Fujitsu Semiconductor Ltd.
- Abstract
- 強誘電体La-doped Pb(Zr,Ti)O3薄膜を用いたIoTエッジデバイス用メモリ技術を確立することに成功した。その開発において、我々は、La-doped Pb(Zr,Ti)O3の結晶化アニール時に、Arに2%のO2を含ませた雰囲気とすることで、分極特性の向上を通じて強誘電体メモリの製造歩留りが大きく向上することを見出した。結晶構造解析を行った結果、最適なO2; 2%では膜表面のランダム配向結晶が消失していることが明らかになった。その消失理由を明らかにするために、Ar/O2濃度比による結晶成長過程の違いを調べた結果、準安定パイロクロア相から安定ペロブスカイト相への相転移速度が、Ar雰囲気では速くO2雰囲気では遅いことが明らかになった。最適なO2; 2%では、膜表面から供給されたO2により、膜厚方向にO2濃度分布が生じた結果、膜表面のランダム配向結晶の形成が抑制され、下部電極から成長する配向成分のみが優先的に形成されたと考えられる。
大阪大学 大学院基礎工学研究科 Graduate School of Engineering Science, Osaka University
- Abstract
- ナノ磁性体を含有するスピントロニクスデバイスは磁化方向により電気抵抗を変える磁気抵抗効果を示す。この効果は既にハードディスクドライブの磁場センサーとして応用され、記録素子応用へ向けた研究開発も盛んに行われている。最近では、より省エネルギー化を目指した素子開発が行われており、電流を流さずに電圧をかけて磁性体表面を帯電させるだけで磁化反転を行う研究が行われている。本研究ではこの電圧効果の起源を解明するために、L10-FePt/MgOトンネル接合を用いてPt吸収端のX線磁気円二色性分光を行った。その結果、印加電圧に対応してPt原子のTz項(電気四極子並びに原子内部のスピン密度非対称性に由来する項)が変化することを見出した。理論解析からは誘起されたTz項がスピン反転励起を通じて、系の磁気異方性エネルギーを大きく変えることがわかった。本稿では強磁性金属薄膜における電圧誘起磁気異方性変化及びその微視的物理描像を紹介する。
東北大学 大学院理学研究科 Graduate School of Science, Tohoku University
- Abstract
- 地球の最中心に位置する内核の化学組成を推定することは、地球の形成・進化を解明する上で極めて重要である。本研究では、X線非弾性散乱のビームライン内にレーザー加熱システムを構築し、ダイヤモンドアンビル高圧発生装置と組み合わせることで、地球内部を再現した高温高圧条件下での地球核の主成分である鉄の音速測定に成功した。本実験結果と地球物理的観測を比較、また地球化学的見地を踏まえることで、地球内核中には水素・珪素・硫黄が含まれている可能性が高いことを明らかにした。
(国)産業技術総合研究所 省エネルギー研究部門 Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology
- Abstract
- SPring8のBL40XUで行われた本長期利用課題(2014B0111~2017A0111)において、地球温暖化の抑制に資するエンジン超高効率に貢献することを目指し、これまで光学技法では計測できなかった高圧燃料噴射ノズル内部および近傍流動の詳細解析を行った。3年の研究期間で、ノズル内部および近傍流動の定量解析を可能とする新たなX線計測技法を開発しつつ、燃料噴霧の形成を支配する様々な物理因子の影響に関する新たな知見と理論モデルを研究社会に提示してきた。本稿では、これまで構築してきた代表的なX線噴霧計測技法と、評価可能なノズル内部および近傍流動の計測項目について紹介する。また、X線噴霧計測技法から生み出された研究成果と産業技術開発への貢献について紹介する。
大阪大学 基礎工学研究科附属極限科学センター 超高圧研究部門 Center for Science and Technology under Extreme Conditions, Graduate School of Engineering Science, Osaka University
- Abstract
- 本研究は、メガバール(= 1 Mbarは、106気圧 = 100 GPa)を超える高圧力の領域における物質科学を新展開させ、それによりこれまで為し得なかった物質創造に挑戦することを目指したものである。メガバールの超高圧力は、物質内の原子間隔を単純に縮めることによる効果にとどまらず、電子軌道を変化させ、その結果ネットワークを組み替え、物性を大きく変化させる。このような操作はいわば、「超高圧化学」=「メガバールケミストリー」とよべる圧力の領域といえる。本研究は、このような超高圧力下における物質科学を、科学研究費補助金(特別推進研究)「超高圧力下の新物質科学:メガバールケミストリーの開拓」(H26~30)の援助を得て、長期利用課題(課題番号:2014B0112~2017A0112)を通じて展開したものである。
2. 研究会等報告/WORKSHOP AND COMMITTEE REPORT
(公財)高輝度光科学研究センター 利用研究促進部門 Research & Utilization Division, JASRI
(公財)高輝度光科学研究センター 利用研究促進部門 Research & Utilization Division, JASRI
[1](公財)高輝度光科学研究センター 光源基盤部門 Light Source Division, JASRI、[2](公財)高輝度光科学研究センター 情報処理推進室 Information-technology Promotion Division, JASRI
3. SPring-8/SACLA通信/SPring-8/SACLA COMMUNICATIONS
4. 談話室・ユーザー便り/USER LOUNGE・LETTERS FROM USERS
SPring-8ユーザー協同体(SPRUC)庶務幹事/(国)理化学研究所 放射光科学総合研究センター RIKEN SPring-8 Center
(公財)高輝度光科学研究センター 利用推進部(兼)利用研究促進部門 User Administration / Research & Utilization Division, JASRI