Volume 23, No.3
August issue 2018
1. 最近の研究から/FROM LATEST RESEARCH
東京大学大学院 理学系研究科 Graduate School of Science, The University of Tokyo
- Abstract
- SPring-8において利用可能な幅広いエネルギー範囲での大強度なX線光源を利用したX線分光法は、環境試料中の様々な元素の挙動とその影響の解明(環境化学)や有用元素の濃集過程の解明(資源化学)に寄与する。特にX線分光による原子・分子レベルの化学的素過程の解明は、個々の原子の性質に基づく物質循環の理解や、それに基づく環境影響の将来予測に大きく貢献する。ここでは、関連試料へのX線分光の利用の基盤技術(試料調製、X線分光の高度化、試料損傷低減への工夫など)を開発すると共に、サステナブル社会の実現に寄与する大気化学、資源化学、土壌化学などの分野での最新の研究にこれらを応用することで、応用上の実際的な問題を解決すると共に、この分野における放射光X線分光法の有用性を示した。
ゲノム編集ツールCas9エンドヌクレアーゼのX線結晶構造
Crystallographic Analysis of CRISPR-Cas Genome Editor Nucleases
東京大学大学院 理学系研究科 Graduate School of Science, The University of Tokyo
- Abstract
- 原核生物のもつCRISPR-Cas獲得免疫機構に関与するRNA依存性DNAヌクレアーゼCas9はガイドRNAと相補的な2本鎖DNAを選択的に切断する性質をもつ。近年、Cas9を利用したゲノム編集技術は基礎研究から臨床応用にいたる幅広い分野において急速に普及した。本長期利用課題では異なる細菌に由来する多様なCRISPR-Cas酵素の結晶構造を決定し、そのRNA依存性DNA切断機構を原子レベルで明らかにすることに成功した。さらに、構造情報を基にした新規のゲノム編集ツールの開発にも成功した。
東京大学大学院 工学系研究科 Graduate School of Engineering, The University of Tokyo
- Abstract
- 複数の分子が自律的に複合体を形成し、高次構造を構築する現象を「自己集合」と呼ぶ。自然界では、例えばウイルスのカプシド構造に代表されるように、数百成分のサブユニットが関わる高度な自己集合の例が多数存在する。しかし人工系における分子の自己集合は、未だその足元にすら及んでいない。我々は、自然界の自己集合系に少しでも迫るため、多成分系の自己集合の方法論や設計指針の確立を目指す研究を行ってきた。先長期利用課題[1][1] 課題番号:2015A0120~2017B0120(BL38B1)、2016A0129~2017B0129(BL41XU)においては、単結晶X線構造解析によって得られた予想外の自己集合構造から、数学的な規則性を見出すことにより、多成分系における分子自己集合の新たな設計指針を見出すことができた。
[1]Department of Physics, University of Warwick, [2]H. H. Wills Physics Laboratory, University of Bristol, [3]School of Physics and Astronomy, Cardiff University, [4]DMSC - European Spallation Source
- Abstract
- We report on our recent long term project at SPring-8 to perform magnetic Compton scattering studies exploiting our "Spectromag" cryomagnet on beamline BL08W. Magnetic Compton scattering probes the ground state spin density in magnetic materials, and via interpretation with electronic structure calculations can reveal details about the underlying physics. The cryomagnet enables a sample environment with magnetic fields up to 9 T and temperatures down to 1.5 K. Our project combined refinement of the experimental technique as we try to measure more difficult materials, such as small crystals or those with small magnetic moments. In this article, we will demonstrate the value of magnetic Compton scattering, with some examples of our recent long term project research performed using our magnet on BL08W, including studies of the magnetism in the quantum critical system Sr3Ru2O7 and in the iridate system Nd2Ir2O7.
[1]The Ritchie Centre, Hudson Institute of Medical Research, [2]Department of Obstetrics and Gynaecology, Monash University, [3]School of Physics and Astronomy, Monash University
- Abstract
- Premature newborns commonly receive non-invasive respiratory support, such as continuous positive airway pressure (CPAP), delivered by a face mask in the delivery room. This requires the infant to breathe for itself, but if it does not, positive pressure ventilation (PPV) is applied. However, this approach has a high failure rate, necessitating premature newborns to be invasively intubated and mechanically ventilated. Importantly, CPAP has been implemented into clinical practice without any understanding for how it interacts with the changing physiology at birth.
Before birth, the fetus closes its larynx when it is not making breathing movements (is apneic), which blocks anything from entering or leaving the lungs, and only opens the larynx when it makes breathing movements. We hypothesised, if the newborn is not breathing, it will close its larynx and prevent air from entering the lung. Using phase contrast X-ray imaging, we imaged the larynx of premature newborn rabbits to determine whether the fetal pattern of larynx closure persists after birth. We showed that immediately after birth the larynx is predominantly closed and only opens during a breath, preventing PPV from ventilating the lung. Once the newborn had aerated its lungs and established a stable breathing pattern, the larynx remained predominantly open, allowing PPV to ventilate the lung. These findings provided first understanding for why CPAP can fail in premature newborns in the delivery room.
To understand why the larynx switches from mostly closed into a predominantly open state after birth, we investigated the role of oxygenation. We showed that hypoxia is a potent inhibitor of spontaneous breathing and causes the larynx to close, whereas oxygen stimulates breathing and opens the larynx. Our ongoing work is aimed at generating the evidence required to target interventions that improve the success of non-invasive respiratory support for premature newborns in the delivery room.
2. 研究会等報告/WORKSHOP AND COMMITTEE REPORT
[1](公財)高輝度光科学研究センター 光源基盤部門 Light Source Division, JASRI、[2](国)理化学研究所 放射光科学研究センター XFEL研究開発部門 XFEL Research and Development Division, RIKEN SPring-8 Center、[3](公財)高輝度光科学研究センター XFEL利用研究推進室 XFEL Utilization Division, JASRI
[1](公財)高輝度光科学研究センター 光源基盤部門 Light Source Division, JASRI、[2](公財)高輝度光科学研究センター 利用研究促進部門 Research & Utilization Division, JASRI、[3](公財)高輝度光科学研究センター タンパク質結晶解析推進室 Protein Crystal Analysis Division, JASRI、[4](国)理化学研究所 放射光科学研究センター XFEL研究開発部門 XFEL Research and Development Division, RIKEN SPring-8 Center
SPring-8夏の学校実行委員会 委員長 SPring-8 Summer School Executive Committee, Chair