■ Public Beamlines

No.	Beamline name	Research areas	
Experimental s	tation/system		
Light source (energy range at sample position, etc.)		
	BL01B1 : XAFS I	Wide energy range (3.8-113 keV), XAFS of dilute systems and thin films, Time-resolved XAFS by quick scan (time-resolved	
		QXAFS), Depth-resolved XAFS, XAFS at low and high temperatures, Simultaneous XAFS and XRD measurements,	
1		Simultaneous XAFS and IR measurements	
1		detector, 19-element Ge solid-state detector, Conversion electron yield (CEY) detector, Two-dimensional X-ray detector	
	PILATUS, Electric furnace (1000 ℃), Cryostat (4 K), G	as supply and detoxifying system, Fourier transform infrared (FT-IR) spectrometer ($4000 \text{cm}^{-1} \sim 500 \text{cm}^{-1}$), Bending magnet	
	(3.8-113 keV)		
	BL02B1 : Single Crystal Structural Analysis	Charge density study using high energy X-ray, In-situ single crystal experiments, Micro crystal structure analysis	
2	Hybrid photon counting detector. (Please contact the b	peamline scientist, if you submit the beamline proposal for the first time and want to use own experimental devices.)	
	Bending magnet (8-70 keV)		
	BL02B2 : Powder Diffraction	Charge density study from powder diffraction, Structural phase transition, Ab initio structure determination from powder	
		diffraction, Crystal structure refinement by Rietveld method, In situ powder diffraction experiment under gas and vapor	
3		adsorption/desorption	
3		: 90 - 1100 K). Diffractometer for powder diffraction with multiple MYTHEN micro-strip x-ray detector and flat panel	
	detector. Please contact to the responsible beamline scientist, if you want to do extremely low-temperature using cryostat (< 100 K), high temperature using furnace (<1300 K,		
	Heating stage< 1647 K), and In situ powder X-ray diffi	raction experiment under gas and vapor adsorption/desorption. Bending magnet (12-37 keV)	
	BL04B1: High Temperature and High Pressure	X-ray diffraction measurements and radiography under extreme conditions using large-volume press	
4	Research		
4	Large-volume press (SPEED-1500, SPEED-Mk.II), AC/DC power supply for resistance heating, Energy-dispersive X-ray diffractometer, 2D X-ray CCD detector, High-speed cMOS		
	camera, Ultrasonic velocity measurement system, Bending magnet [white, 20-150 keV; Si(111), 30-60 keV]		
	BL04B2: High Energy X-ray Diffraction	Structural analysis of glass, liquid, and amorphous materials	
_	High-throughput PDF measurement system, automatic sample-exchanger (50 samples, 100-1100 K), low/high temperature system with nitrogen gas blowing, X-ray PDF		
5	diffractometerfor amorphous materials (Cryostat (20 K-RT), high-temperature furnace (~1,300 K), Aerodynamic levitation system (1,200~3,200 K))		
	Bending magnet [Si(511) 113 keV; Si(220), 61.4 keV]		
	BL08W : High Energy Inelastic Scattering	Magnetic Compton scattering, High-resolution Compton scattering, Compton scattering imaging, High-energy X-ray	
		scattering, High-energy X-ray fluorescence analysis (XRF), Time-resolved pair distribution function analysis (PDF)	
6	Magnetic Compton scattering spectrometer, High-resol	ution Compton scattering spectrometer, High-energy X-ray fluorescence spectrometer, Flat area panel detector, Elliptical	
	multipole wiggler (Station A, 110-300 keV; Station B,	100-210 keV)	
L)		

No.	Beamline name	Research areas	
Experimental s	station/system		
Light source (energy range at sample position, etc.)		
	BL09XU: HAXPES I	Resonant hard X-ray photoelectron spectroscopy(HAXPES), Polarization-dependent HAXPES using diamond phase	
		retarder, Depth analysis of electron state, Materials science and applied materials science	
	· In-vacuum undulator (4.9-100 keV)		
	· Double channel cut monochromator(DCCM): Si 220	x 2, Si 311 x 2 (hn=4.9-12 keV, Tunable photon energy) / CCM Si 333,444,555 (hn=6,8,10 keV, Fixed energy)	
7	· Double X-ray phase reterdar: Polarization change (h	n=5.9-9.5 keV)	
'	· Experimental hutch 1: High-energy-resolution photo	pelectron spectroscopy by hard X-ray excitation	
	• Experimental hutch 2: Depth analysis of in-solid and interface electron states		
	· Spot size: 1.5 μm(V)×20 μm(H) (EH1), 1.5 μm(V)×11 μm(H) / 1.5 μm(V)×1 μm(H)* (EH2)		
	(* Users who wish to use the Φ1 μm focusing and/or mapping of photoelectron should contact the Beamline Scientist before applying for beamtime.)		
	• Temperature range of sample: ~20-400 K (Liquid He flow is used for cooling)		
	BL10XU : High Pressure Research	Crystal structure analysis under high pressure using diamond-anvil cells, in-situ/operando observation of phase transition	
		and compression behavior under extreme conditions, Material sciences under extreme conditions, High pressure Earth and	
		planetary science	
	• Systems for high pressure experiments using diamond anvil cells (<500 GPa): X-ray flat panel detector, Imaging plate, photon-counting pixel detector with CdTe sensor,		
8	Ionization chamber, PIN PD, X-ray focusing lens, Multi-channel collimator, Raman spectroscopy system, pressure measurement system for ruby fluorescence method, Cryostat for		
	high pressure experiment (7-300 K), Laser heating system (1,500-6,000 K), Resistive heating system (300-1,000 K), Gas pressure controller for gas membrane DACs		
	(Please contact to BL scientists about using high speed photon-counting detector, Multi-channel collimator system, and/or Resistive heating system before application.)		
	• In-vacuum undulator and Si (111)/ Si (220) double crystals: 6-61 keV		
	• Typical focused X-ray beam size: \sim 20 μ m(H, V) (EH1)、0.8 μ m(V)× 0.9 μ m(H) / 1.8 μ m(V)×2 μ m(H) / 7 μ m(V)×9 μ m(H) (EH2)		

No.	Beamline name	Research areas		
Experimen	tal station/system			
Light source	ce (energy range at sample position, etc.)			
	BL13XU: X-ray Diffractions and Scattering I	X-ray diffraction and reflectivity measurements, Atomic-scale structural analysis of crystal surfaces and interfaces, ultrathin films, and nanostructures, Residual stress measurement, Time-resolved X-ray diffraction, In-situ process observation using X-ray diffraction, Operando X-ray diffraction, High-resolution powder X-ray diffraction and X-ray total scattering,		
		Structural refinement using Rietveld analysis, In-situ/operando powder X-ray diffraction, Time-resoluved powder X-ray diffraction, Analysis of local structures using nanodiffraction		
	Experimental hutch 1: Versatile Six-axis Diffracton	neter		
	Experimental hutch 2: Diffraction measurement m	ulti-purpose frame		
	Experimental hutch 3: High-resolution powder X-r	ay diffraction		
	Experimental hutch 4: Nanobeam X-ray diffraction	system		
	Si 111/ 311 double-crystal monochromator			
9	Experimental hutch 1: 6-axis X-ray diffractometer (HUBER)/ C-type χ cradle (4 axes for sample, 2 axes for detector), Sample stage (XYZ and swivel), Double slit, Soller slit, Analyzer crystal, Thin film sample heating device (Anton Paar DCS500, -180 to 500°C), Small tensile tester (MAX load: 200 N, 2 kN), Various ample atmosphare (Vacuum, N2, He, Al)			
	Scintillation detector (FMB, LaBr3), Ion chamber,	Scintillation detector (FMB, LaBr3), Ion chamber, 1D detector (6-module of MYTHEN), 2D detector (PILATUS(Si) 300K, 2M)		
	Experimental hutch 2: Sample stage with a hexapod, Robot arm for a detector, 2D detector (PILATUS X 300K, PILATUS X 2M)			
	Experimental hutch 3: Powder Diffractometer equiped with six 2D CdTe photon-counting pixel detectors (Lambda 750 K), Large Area Flat panel detector (XRD1611, 400 x 400 mm²). Sample Changer / Automatic measurement system (100 sample, 100 - 1100 K), Large area load table for various operand measurements(θ, XYZ), low- or high-temperature N2 gas streams devices(90 - 473 K, RT - 1100 K), Remote gas handling system for capillary, Please contact to the responsible beamline scientist, if you want to do extremely low-temperature using cryostat (4 - 300 K), high temperature using Anton Paar furnace and Linkam flat plate furnace(~1300 K, ~1700 K), and In situ powder X-ray Experimental hutch 4: Nanobeam X-ray diffraction system, Fresnel zone plate, X-ray compound refractive lenses, HyPix-3000, Ionization chamber, Pi PIN photodiode, In-vacuum undulator (5 - 72 keV)			
	BL14B2 : XAFS II	X-ray imaging, XAFS in a wide energy range (5-72 keV), XAFS of dilute systems and thin films, Time-resolved XAFS by		
	SET-SE : XALS II	quick scan (Time-resolved QXAFS), Simultaneous XAFS and XRD measurements		
	X-ray imaging camera, XAFS measurement system	, Ionization chamber, 19-element Ge solid-state detector (SSD), 7-element SDD, Lytle detector, Conversion electron yield (CEY)		
10	detector, Two-dimensional X-ray detector PILATUS, Cryostat (10 K-RT), High-temperature cell for transmission (RT-1,000 °C), High-temperature cell for fluorescence (RT-800			
	℃), High-temperature and pressure cell for transmission (1-9 MPa, RT-700 ℃), Gas supply and exhaust system [Users who wish to use the system should contact the Beamline Scientist (Honma) before applying for beamtime.] Bending magnet (5-72 keV)			

No.	Beamline name	Research areas		
Experimenta	ıl station/system			
Light source	e (energy range at sample position, etc.)			
	BL19B2: X-ray Diffractions and Scattering II	Residual stress measurement, Structural analysis of thin film, surface and interface, Powder X-ray diffraction, X-ray		
		topography, Ultrasmall-angle X-ray scattering		
	Experimental hutch 1: Versatile High-throughput o	diffractometer (powder diffractometer), low- or high-temperature N2 gas streams devices(100 - 500 K, RT - 1000 K), fully-		
	automated sample changer, triaxis oscillation-rota	tion sample stage, multi-soller slits.		
	Experimental hutch 2: 6-axis X-ray diffractometer	(HUBER)/ C-type χ cradle (4 axes for sample, 2 axes for detector), Sample stage (XYZ and swivel), Double slit, Soller slit,		
11	Analyzer crystal, Thin film sample heating device (Anton Paar DHS1100, room temperature to $1100 ^{\circ}$), Thin film sample heating and cooling device (Anton Paar DCS500, -180 to		
	500%) , Small tensile tester (MAX load: 200 N, 2 k of MYTHEN), 2D detector (PILATUS(Si) 300K).	N), Various ample atmosphare (Vacuum, N2, He, Al), Scintillation detector (FMB, LaBr3), Ion chamber, 1D detector (6-module		
	Experomental hutch 3: Small-angle X-ray scatterin	g (SAXS) camera with a camera length of 0.7 - 40 m. fully-automated sample changers, temperature control device (HCS302,		
	Instec Inc., −190 - 400℃).			
	Bending magnet (6-72 keV)	Bending magnet (6-72 keV)		
	BL20XU : Medical and Imaging II	X-ray micro-/nano-imaging: micro-CT, nano-CT (15-37.7 keV), refraction/phase contrast imaging, X-ray diffraction		
		tomography (XRD-CT), microbeam/scanning x-ray microscope		
		Research and development of X-ray optics and optical elements, coherent X-ray optics		
		Ultra small-angle X-ray scattering (USAXS, 23 keV)		
	High-precision diffractometer for various types of	imaging, Liquid-nitrogen-cooled Si(111) double-crystal monochromator (7.62-37.7 keV) or Si(220) double-crystal		
12	monochromator (~61 keV), Middle-length undulat	tor beamline (245 m), Beam size: 1.4 mm(H) x 0.7 mm(V) at 1st experimental hutch and 4 mm(H) x 2 mm(V) at 2nd		
	experimental hutch, High-resolution X-ray imaging	experimental hutch, High-resolution X-ray imaging detectors (resolution ~1 μm), Large view field X-ray imaging / XRD detectors (maximum FOV 40 mm, resolution 10-20 μm),		
	Imaging intensifier (Be window, 4-inch type), Grove box for preparing samples (dew point about -60 degrees. installed in the downstream hutch outside the storage ring			
	building. Ar atmosphere is available and N2 atmosphere also can be used if necessary. Users who wish to use them should contact the Beamline scientist beforehand at least 2 weeks),			
	Integrated measurement including micro-/nano-CTs, XRD and microbeam is available (prior consultation with beamline scientist required)			
	USAXS (23keV, $3.6x10^-4 < q < 2.9x10^-3 [1/Å]$, for smaller q-value than $3.6x10^-4$ prior consultation with beamline scientist required)			
	BL20B2 : Medical and Imaging II	X-ray micro-CT/laminography, X-ray phase tomography, X-ray real-time imaging(absorption or refraction contrast),		
		ultra-fast X-ray radiography and X-ray micro-angiography. Small-animal experiments for medical research.		
		Research and development of basic techniques for evaluation of optical devices and X-ray imaging		
13	High-precision stages for X-ray imaging, General-porpose experimental tables, Long-stroke sample/detector stages, High-resolution X-ray imaging detector (resolution, 1 ~ 10 μ			
	m), Wide field of view X-ray imaging detector (50 mm in width), Large-area X-ray imaging detector (flat panel), Medium-length beamline (215 m), Maximum beam size			
	[experimental hutches 2 and 3, 150 mm(H) × 15 mm(V); experimental h1utch 1, 30 mm(H) × 4 mm(V)], Bending magnet (Standard crystal monochromator: 8-72 keV,			
	multilayer monochromator: 40 keV, 110 keV)			

No.	Beamline name	Research areas		
Experimenta	l station/system			
Light source	(energy range at sample position, etc.)			
	BL25SU : Soft X-ray Spectroscopy of Solid	Circular polarized soft X-ray beam generated by twin-helical undulator. Research on electronic states by photoemission		
		spectroscopy (PES), Research on electronic band structures by angle-resolved photoemission spectroscopy (ARPES),		
		Study of magnetic states by magnetic circular dichroism (MCD) of soft X-ray absorption, Analysis of surface atomic		
		arrangement by photoelectron diffraction (PED), Nano-spectroscopic analysis using low-energy/photoemission electron		
		microscope (SPELEEM).		
14	A branch: Retarding field analyzer (RFA), Micro-f	ocused soft X-ray PES, Low-energy/photoemission electron microscope		
	B branch: Electric-magnet XMCD measurement s	stem, Pulsed-magnet XMCD measurement system (Since 2022B term, the Nano-XMCD finished operation for public use.)		
	(A branch, 0.12-2 keV; B branch, 0.2-2 keV)			
	Contact the Beamline Scientist of BL25SU before	applying for beamtime for cases (1)-(4) below.		
		(1) When you use RFA system		
	(2) When you wish to carry out experiments usin			
		neasurement system (4) When you plan to use SPELEEM system		
	BL27SU : Soft X-ray Photochemistry	Soft X-ray photoabsorption spectroscopy of dilute samples in partial fluorescence yield mode, Surface and interface		
		analysis using depth-resolved Soft X-ray photoabsorption spectroscopy, Soft X-ray photoabsorption spectroscopy under		
		ambient atmospheric pressure, Spectroscopy using soft X-ray microbeam, Observation of electron state in solids by soft X-ray emission spectroscopy		
	B branch: High-energy soft X-ray beam (2.1-3.3	<u> </u>		
		B branch: High-energy soft X-ray beam (2.1-3.3 keV) using Si(111) crystal monochromator -Soft X-ray photoabsorption spectrometer (electron yield mode and partial fluorescence yield mode)		
15	-X-ray fluorescence analyzer	on yield mode and partial modes yield modely		
15	-Scanning soft X-ray microspectroscopy			
	C Branch: Low-energy soft X-ray beam (0.17-2.2 keV) using grating monochromator			
	-Soft X-ray photoabsorption spectrometer (electron yield mode and partial fluorescence yield mode)			
	-Soft X-ray photoabsorption spectroscopy under ambient atmospheric pressure (Users who wish to use the system should contact the Beamline Scientist (Nitta) before applying			
	for beamtime.) - Soft X-ray emission spectrometer			
	BL28B2 : White Beam X-ray Diffraction	White X-ray diffraction: X-ray topography, Energy-dispersive strain measurement		
	BLZOBZ: White Bealth A-ray Diffraction			
		High energy (~200 keV) X-ray microtomography, Automatic high-energy X-ray micro-CT system		
16	White V ray tanggraphy outton. Energy dispersi	High-speed X-ray imaging		
	White X-ray topography system, Energy-dispersive XAFS system, Experimental system for biomedical application experiments, Multipurpose diffractometer Bending magnet (White, ≥5 keV)			
	Beam size: 50 mm(H) x 5 mm(V) @white beam, 50 mm(H) x 1.5 mm(V) @200 keV			
	beam size. 50 mm(n) x 5 mm(v) wwinte beam,	30 mm(m) x 1.3 mm(v) @200 kCv		

No.	Beamline name	Research areas	
Experimenta	al station/system		
Light source	e (energy range at sample position, etc.)		
	BL35XU : Inelastic and Nuclear Resonant	Scattering Phonons in solids and atomic dynamics in disordered materials by inelastic X-ray scattering. Atomic and molecular dynamics by nuclear resonant inelastic scattering and quasi-elastic scattering. Synchrotron-radiation-based Mössbauer spectroscopy. Nuclear excitation.	
	Inelastic X-ray Scattering (IXS) (~1 to 100 r	nm ⁻¹ , 12 analyzers)	
	• In-vacuum undulator (17.794 and 21.74		
17	· Spot size: ~Φ80 μm(Φ20 μm with KB setup)		
	Nuclear Resonant Scattering (NRS): Nuclear time domain interferometry	inelastic scattering spectrometer, Time-domain/Energy-domain Mössbauer spectrometer, Quasi-elastic scattering spectrometer using	
	In-vacuum undulator (14.4 - 27.8 keV, 43.0	0 - 100 keV)	
	\cdot Spot size: ~50 (H) $ imes$ 25 (V) μ m at 14.4 k	xeV	
	BL37XU : Trace Element Analysis	X-ray microbeam/nano-beam spectrochemical analysis, X-ray spectroscopic imaging, Ultratrace-element analysis, High- energy X-ray fluorescence analysis	
		Projection/scanning/imaging XAFS microscopy, High brightness XAFS, Coherent diffraction imaging XAFS microscopy	
18	crystal Laue analyzer, X-ray shutter Ionization chamber, PIN photodiode, 1-element Ge solid-state detector, 7-element Si drift detector, Indirect conversion X-ray image detector (High speed CMOS camera), Flat-panel detector, 2D pixel array detector In-vacuum undulator, Liquid-nitrogen-cooled double-crystal monochromator (Si(111): 4.5~37.7 keV, Si(511): 12~113 keV), Higher harmonics rejection mirrors (Pt/Ru coated bent flat mirror for horizontal forcusing)		
	() ()	H)×100 nm(V) (W.D. = 100 mm, 5~55 keV), 500 nm(H)×300 nm(V) (W.D. = 300 mm, 5~30 keV)	
	BL39XU : Magnetic Materials	X-ray magnetic circular dichroism (XMCD) spectroscopy and element-specific magnetometry (ESM), X-ray emission spectroscopy (XES) and its magnetic circular dichroism, XMCD magnetic imaging and local ESM using micro/nanobeam, XAFS microscopy and local ESM, XAFS and XMCD at high pressure, X-ray spectroscopy using variable X-ray polarization (horizontally/perpendicularly linear or circular)	
	Diamond circular polarization element (X-ray phase retarder, operable at 4.92-23 keV) XMCD spectrometer + Magnetic field generator [electromagnet (3.5 T), superconducting magnet (7 T, 2 K)]		
19	X-ray emission spectrometer(incident X-rays: 4.92-28 keV, emission X-rays: 4.4-24 keV)(*,**)		
	Cryogenic device [helium-flow cryostat (11-500 K), superconducting magnet (2-300 K), pulse-tube-type cryostat (4-300 K)(*)]		
	High-pressure generator (DAC, atmospheric pressure-180 GPa at RT, atmospheric pressure-40 GPa at low temperature)(*)		
	KB focusing mirror for high-pressure XMCD (beam size, 1(vertical) x 10(horizontal)μm; W.D.=750 mm; 4.92-30 keV)(*)		
		KB focusing mirror for microscopic XMCD and XAFS (beam size, 100-300 nm; W.D.= 80 mm; 4.92-16 keV)(*)	
	(*)Users who wish to use these devices shou	(*)Users who wish to use these devices should contact the Beamline Scientist before applying for beamtime.	
	(**)Some energy ranges are not available.	(**)Some energy ranges are not available.	

No.	Beamline name	Research areas		
Experimenta	al station/system			
Light source	e (energy range at sample position, etc.)			
	BL40XU : High Flux	Fast time-resolved X-ray diffraction and scattering experiments, X-ray photon correlation spectroscopy, X-ray fluorescence		
		analysis, Microbeam X-ray diffraction and scattering experiments, Micro-crystallography		
	Experimental hutch 1: X-ray shutters,	Fast CMOS video camera (Orca-Flash 4.0 (Hamamatsu), FASTCAM Mini AX200(Photron), FASTCAM NovaS16(Photron), Flat-panel		
	detector(C9728DK-10, Hamamatsu), Pilatus3 X 100kA (Dectris), Eiger2 S 500k(Dectris), X-ray image intensifier (4 inches, Hamamatsu), Nd:YAG laser (Surelite II-10, Continuum)			
	Small-angle scattering vacuum path (Small-angle scattering vacuum path (maximum sample/detector distance, 3.5 m), Pinhole optics (typically ≥5 µm, 2 µm in special cases), Stopped-flow mixing system (SFM-		
	4000S, BioLogic)			
20	Experimental hutch 2**: Precision dif	fractometer, Zone-plate-focusing optics, femtosecond-laser system, EIGER 1M		
	*Helical undulator (8-17 keV)			
	*Beam size at sample: 250 µm (H) x	40 μm (V)		
	*Flux: 10^15 photons/s (12 keV)			
	*Quasi-monochromatic beams ($\Delta\lambda/\lambda=2\%$) without the need of a monochromator			
	**Please contact the beamline scientis	**Please contact the beamline scientist, if you submit the beamline proposal for the first time and want to use own experimental devices.		
	BL40B2 : SAXS BM	Small-angle X-ray scattering (SAXS)		
	Small-angle scattering camera [Vaccum path length, 250, 500, 1000, 1500, 2000, 3000, 4000, 6000(*) mm]			
	Pixel array detector (Pilatus3S 2M, Pilatus100KS and Eiger2 S 500K Dectris Ltd., ModuPIX ADVACAM)			
	Imaging plate ditector (R-AXIS VII(*), Rigaku Corporation)			
	Flat-panel detector (C9728DK-10, Har	Flat-panel detector (C9728DK-10, Hamamatsu Photonics K.K., for wide angle)		
21	Switching mechanism system betweer	n SAXS and WAXS (SAXS: 1000, 1500, 2000, 3000, 4000 mm for Pilatus2 S 2M; WAXS: 85-170 mm for Eiger2 S 500K)		
	Sample-environment equipment: Temperature control (HCS302 and TS62 Instec Inc., 10002L Linkam Sci., Mechanical characterisation system(*) (10073L Linkam Sci.), DSC(*			
	(FP84HT, Mettler-Toledo International Inc.), DSC(*) (Rigaku Corporation)), Nitrogen gas generator (maximum flow rate: 5 L/min), Automatic cell cleaning system and sample			
	changer(*) (BioCUBE, Xenocs Inc.), Liquid Chromatograph(HPLC)(*) (Prominence, Shimadzu Corp.)			
	Bending magnet (6.5-22 keV)			
	(*)Users who wish to use these devices should contact the beamline scientist before applying for beamtime.			

No.	Beamline name	Research areas	
Experimental s	station/system		
Light source (energy range at sample position, etc.)		
	BL41XU: Macromolecular Crystallography I	Macromolecular crystallography, Micro-crystallography,Ultra-high resolution structural analysis	
	Diffractometer for macromolecular crystallography		
	In-vacuum undulator (normal mode, 6.5-17.7 keV; *high-energy mode, 19-35 keV)		
	Beam size (at sample position): $5(H) \times 5(V) \mu m^2 \sim 50(H) \times 50(V) \mu m^2$ (normal mode), $30 \times 30 \mu m^2 \sim 300 \times 300 \mu m^2$ (high energy mode)		
	Hybrid photon counting detector EIGER2 XE 16M (normal mode), EIGER2 X CdTe 4M (high-energy mode)		
22	Cryo-cooler (N2 gas, ≥100 K; He gas, ≥20 K)		
	Peltier-cooled silicon drift detector		
	SPring-8 precise automatic cryo-sample exchanger (SI	PACE)	
	*Users who wish to use the high-energy mode should	contact the Beamline Scientist before applying for beamtime.	
	Public use of cryogenic transmission electron microsco	opes, EM01CT (CRYO ARM 300) and EM02CT(CRYO ARM 200), have started in 2021B as an ancillary facility.	
	Please check the following Web-site before using the beamline.		
	http://stbio.spring8.or.jp/index_en.php		
	BL43IR : Infrared Materials Science	Infrared microspectroscopy	
	Wavenumber range: 100-20,000 cm ⁻¹		
23	High-spatial-resolution microscope: Objectives (x36(NA=0.5, WD=10 mm), x15(NA=0.4, WD=24 mm), x20(ATR)), Cryostat (4.2 K~400 K), Temperature controlled stage (-190 ~600℃)		
	Long-working-distance microscope: Objective (x8(NA=	=0.5, WD=50 mm), Diamond anvil cell+Cryostat (0.4 mm culet/30 GPa, $10\sim$ 400 K), Cryostat (4.2 \sim 400 K)	
	Magneto-optical microscope: Objective (x16(NA=0.3, WD=40 mm), Magnetic field 14 T, Cryostat (4.2~300 K)		
	BL45XU : Macromolecular Crystallography II	Macromolecular crystallography, Micro-crystallography, Automation & High throughput data collection for protein crystallography	
	Diffractometer for macromolecular crystallography		
	In-vacuum undulator (6.5-16.0 keV)		
	Beam size (at sample position): $5(H) \times 5(V) \mu m^2 \sim 50(H) \times 50(V) \mu m^2$		
24	Hybrid photon counting detector Eiger 16M		
	Cryo-cooler (N₂ gas, ≥100 K)		
	SPring-8 precise automatic cryo-sample exchanger (SPACE)		
	Please check the following Web-site before using the beamline.		
	http://stbio.spring8.or.jp/index_en.php		

No.	Beamline name	Research areas			
Experimental	xperimental station/system				
Light source (energy range at sample position, etc.)				
	BL46XU : HAXPES II	Hard X-ray photoemission spectroscopy			
		Ambient Pressure Hard X-ray Photoemission Spectroscopy			
	In-vacuum undulator (5.5-37 keV)				
	Double channel cut monochromator(DCCM): Si 220 x 2, Si 311 x 2				
25	• Experimental hutch 1: Hard X-ray photoelectron spectroscopy				
	Hard X-ray photoemission spectroscopy system (Scienta Omicron R4000-10kV), hn=6, 8, 10 keV, Spot size: 1 μm(V)×30 μm(H)				
	• Experimental hutch 2: Ambient Pressure Hard X-ray Photoemission Spectroscopy				
	Hard X-ray photoemission spectroscopy system (Scienta Omicron R4000-Hipp2), hn=6, 8, 10 keV, Spot size: 1 μm(V)×10 μm(H), Measurement in gas atmosphere*				
*Please contact to beamline scientists regarding the type of gas and pressure.		regarding the type of gas and pressure.			
	BL47XU: Micro-CT X-ray optics, Planetary science, Materials science, Applied materials science				
26	In-vacuum undulator (5.2-37.7 keV, horizontal polarization)				
20	High-spatial-resolution micro-tomography system, High speed imaging system, Hard X-ray microbeam/scanning microscopy experiment				
	Please contact to beamline scientists before putting on a new proposal to BL47XU.				

■ RIKEN Beamlines

No.	Beamline name	Research areas		
Experimenta	l station/system			
Light source	(energy range at sample position, etc.)			
	BL05XU : R&D-ID I	Strucutural analysis by small and wide angle X-ray scattering		
	Photon energy: 7~15 keV			
27	Photon flux $< 1 \times 10^{13}$ photons/s (12.4)	Photon flux $< 1 \times 10^{13}$ photons/s (12.4 keV)		
	Sample-to-detector distance: ~10 cm - 4 m			
	For other conditions and facilities, contact the Beamline Scientist beforehand.			
	BL07LSU: R&D-ID II	Development of soft X-ray optical system requiring long undulator radiation		
	6-segment horizontal and vertical figure-8 undulator, energy range 250~2000 eV (horizontal and vertical polarization)			
	Energy resolution (designed value) E/ΔE>10^4			
28	Beam height 1417 mm			
	Beam size > several mm (without refocusing mirror)			
	Flux >10^11 ph/sec/0.01%BW			
	When applying for public use of BL07LS	SU, it is necessary to have a meeting with the BL representative (RIKEN M.Oura: oura@spring8.or.jp) in advance.		

No.	Beamline name	Research areas	
Experimental s	tation/system		
Light source (e	energy range at sample position, etc.)		
	BL16XU: RIKEN Analytical Sciense I	X-ray diffraction and scattering measurements using Versatile Six-axis Diffractometer	
	In-vacuum undulator (undulator period : 40 mm)		
	Liquid-nitrogen-cooled double-crystal monochromator (Si(111) : 5~37 keV)		
29	6-axis X-ray diffractometer (HUBER)/ C-type χ cradle (4 axes for sample, 2 axes for detector), Sample stage (XYZ and swivel), Double slit, Soller slit, Analyzer crystal, Thin film		
	sample heating device (Anton Paar DHS1100, room temperature to 1100°C), Thin film sample heating and cooling device (Anton Paar DCS500, -180 to 500°C), Small tensile		
	tester (MAX load: 200 N, 2 kN), Various ample atmosp	hare(Vacuum, N2, He, Al)	
	Scintillation detector (FMB, LaBr3), Ion chamber, 1D c	letector (6-module of MYTHEN), 2D detector (PILATUS(Si) 300K, 2M)	
	BL17SU: RIKEN Coherent Soft X-ray Spectroscopy	>Scanning soft x-ray spectromicroscope A3 station	
		Microspectroscopic observation of sample surface under conditions ranging from low vacuum to helium atmosphere is	
		>Versatile photoemission electron microscope Bc station	
		Electronic/magnetic states imaging (resolving power: better than 100 nm) and its time-resolved measurements	
20	Helical-8 undulator, Energy range for A and B branches (225* - 2,000 eV) (*225 eV for Circularly polarized light, 272 eV for Horizontally polarized light, 136 eV for Vertically		
30	polarized light) , Energy resolution (E/dE \sim 10,000), Beam size at sample position [\sim 30 μ m(H) \times 4 μ m(V)]		
	Before applying for public use of BL17SU, contact the following persons in charge of respective equipment.		
	Scanning soft x-ray spectromicroscope: Suga (hiroki-suga@spring8.or.jp) at JASRI/RIKEN, Oura at RIKEN (oura@spring8.or.jp)		
	versatile photoemission electron microscope: Ohkochi (o932t023@guh.u-hyogo.ac.jp) at LASTI/RIKEN/JASRI		
	Free space where users can bring their systems: Oura (oura@spring8.or.jp) at RIKEN		
	BL19LXU: RIKEN SR Physics	Research on physical science requiring ultrahigh-brilliance X-ray beam from long undulator	
	Experimental station/system: $5(W) \times 3.4(D) \times 4.5(H)$	m³ open hutch, Optical bench, PIN photodiode, Scintillation counter, Ionization chamber, Stepping motor drivers and	
31	controllers, NIM Bin power supply, Counter, Trigger signal synchronized with RF of storage ring		
	Light source (energy range at sample position, etc.): In-vacuum undulator (7.1-18 keV, 22-51 keV, flux of ~1014 photons/s at 12.4 keV)		
	For other conditions and facilities, contact the Beamline Scientist beforehand.		
	BL26B1 : RIKEN Structural Genomics I	Structural biology research based on single-crystal X-ray diffraction	
	Area detector [Dectris EIGER X], Goniometer with horizontal spindle axis, Blowing cryo-cooler (95 K-RT), Sample changer SPACE, Bending magnet (6.5-15.5 keV)		
32	Diagon should the fallowing Web site before using the beamline		
	Please check the following Web-site before using the beamline.		
	http://stbio.spring8.or.jp/index_en.php		

No.	Beamline name	Research areas		
Experimental	station/system			
Light source (energy range at sample position, etc.)			
	BL29XU: RIKEN Coherent X-ray Optics	Research on physical science using long beamline and coherent X-ray beam		
	Experimental station/system: Open hutches with size	ze of $5(W) \times 3(D) \times 3.3(H)$ m ³ [EH1], $10(W) \times 4.25(D) \times 4.5(H)$ m ³ [EH2], $8(W) \times 4(D) \times 3.3(H)$ m ³ [EH3], and $6(W) \times 4.25(D) \times 4.5(H)$ m ³ [EH2], $8(W) \times 4(D) \times 3.3(H)$ m ³ [EH3], and $8(W) \times 4.25(D) \times 4.5(H)$ m ³ [EH2], $8(W) \times 4(D) \times 3.3(H)$ m ³ [EH3], and $8(W) \times 4.25(D) \times 4.5(H)$ m ³ [EH2], $8(W) \times 4(D) \times 3.3(H)$ m ³ [EH3], $8(W) \times 4(D) \times 3.3($		
33	3(D) × 3.3(H) m³ [EH4], Optical benches, PIN photodiodes, Scintillation counters, Ionization chambers, Stepping motor drivers and controllers, NIM Bin, Power supply, Counter,			
33		nchronized with RF of storage ring Light source (energy range at sample position, etc.): In-vacuum undulator (1st order		
	harmonics : 5-19 keV, 3rd order harmonics : 15-5	6 keV, flux of \sim 6 \times 10 ¹³ photons/s at 10 keV), silicon monochromator(111 plane)(4.4 \sim 37.8 keV) For other conditions and		
	facilities, contact the Beamline Scientist beforehand	l.		
	BL32B2 : R&D-BM	Development of measurement technique using synchrotron radiation from bending magnets		
	Experimental station/system: $5.0(W) \times 3.0(D) \times 3$.3(H) m ³ open hutch, Optical bench, PIN photodiode, Ionization chamber, Stepping motor drivers and controllers, NIM Bin		
34	power supply, Counter			
34	Light source (energy range at sample position, etc.): Bending magnet (Standard double crystal monochromator : 5-72 keV)		
	For other conditions and facilities, contact the Bear	For other conditions and facilities, contact the Beamline Scientist beforehand.		
	Before applying for public use, it is necessary to ha	ive a meeting with the BL representative.		
	BL32XU: RIKEN Targeted Proteins	Structural biology, X-ray crystallography for biopolymer, Micro-crystallography for ultrafine proteins		
	Experimental station/system: EEM focusing mirror	unit, Ultralow-eccentricity high-precision goniometer, Ultralow-temperature He blower, Hybrid photon counting detector		
	(DECTRIS EIGER X 9M), Large-volume sample mounting robot with applicability to Hampton pins			
	Light source (energy range at sample position, etc.):			
	[Light source] Hybrid undulator			
35	[Beam size at sample position] $1 \times 1 - 10 \times 10 \ \mu m^2$			
	[Flux of 1 μ m beam] 7 \times 10 ¹⁰ photons/s at 12.4 keV			
	[Energy range] 9-18 keV (If you prefer to use lower energy X-ray than 9 keV, please contact us)			
	Please check the following Web-site before using the beamline.			
	http://stbio.spring8.or.jp/index_en.php			
	BL36XU : RIKEN Materials ScienceII	Time-resolved QXAFS using tapered-Undulator beam		
36	[Energy region] 4.5-35 keV, [beam size] 40 μm(V)×500 μ m(H), 100 nm(V)×100 nm(H), [time resolution] QXAFS(20 ms).		
	3	ator, channel-cut crystal monochromators (Si(111), Si(220)), Rh/Pt coated vertical/horizontal focusing mirrors, Rh/Pt coated		
	KB mirrors(4.5-35 keV).			
		ement system, 4-element SDD, PILATUS 300KW, 4-element Merlin detector, indirect X-ray image detector		
	In BL36XU, only Quick XAFS apparatus is open for	public use. When you apply for public use of BL36XU, please contact to the beamline staff beforehand.		

No.	Beamline name	Research areas		
Experimental station/system				
Light source (energy range at sample position, etc.)				
37	BL38B1 : RIKEN Structural Biology I	Small Angle X-ray Scattering		
	Bending Magnet(6.5 \sim 15.5 keV) $*$ User opereation is only 12.4 keV or 15.5 keV.			
	Camera length; 300, 2500 mm			
	Detector; DECTRIS PILATUS3X 2M., HPLS system for SEC-SAXS			
	*Use only BioSAXS.			
38	BL43LXU: RIKEN Quantum NanoDynamics	meV Scale IXS for atomic dyanmics		
	Energy: 14.4-26 keV (Fundamental), meV Spectrometer for atomic dynamics			
39	BL44B2: RIKEN Materials Science I	Structural analysis of periodic and aperiodic systems by total scattering		
	Wavelength: 0.41∼0.8 Å			
	Instrument: Two-axis powder diffractometer (20 range: $0.5\sim153^\circ$, 20 step: 0.01°)			
	Temperature: -180~800℃			

■ Contract Beamlines

No.	Beamline name	Research areas		
Experimental station/system				
Light source (energy range at sample position, etc.)				
	BL24XU : Hyogo ID	X-ray imaging/CT		
40	High-resolution X-ray imaging detectors (resolution ~1 μm)			
	Light source: Figure-8 undulator/Liquid-nitrogen-cooled Si(111) double-crystal monochromator (7.62-37.7 keV) or Si(220) double-crystal monochromator (~61 keV)			