■ Public Beamlines

No.	Beamline name	Research areas		
Experim	iental station/system			
Light so	urce (energy range at sample position, etc.)			
1	BL01B1 : XAFS I	Wide energy range (3.8-113 keV), XAFS of dilute systems and thin films, Time-resolved XAFS by quick scan (time-resolved QXAFS), Depth-resolved XAFS, XAFS at low and high temperatures, Simultaneous XAFS and XRD measurements, Simultaneous XAFS and IR measurements		
		e detector, 19-element Ge solid-state detector, Conversion electron yield (CEY) detector, Two- (1000 °C), Cryostat (4 K), Gas supply and detoxifying system, Fourier transform infrared (FT- gnet (3.8-113 keV)		
2	, , , , , , ,	Charge density study using high energy X-ray, In-situ single crystal experiments, Micro crystal structure analysis naging plate camera. (Please contact the beamline scientist, if you submit the beamline proposal		
	for the first time and want to use own experimental c			
	BL02B2 : Powder Diffraction	Charge density study from powder diffraction, Structural phase transition, <i>Ab initio</i> structure determination from powder diffraction, Crystal structure refinement by Rietveld method, In situ powder diffraction experiment under gas and vapor adsorption/desorption		
3	Large Debye-Scherrer camera with imaging plate. Ple using cryostat (< 100 K), high temperature using fur	matic powder diffraction experiment (50 samples : 90 - 1100 K). Diffractometer for powder diffraction with MYTHEN micro-strip x-ray detector, e Debye-Scherrer camera with imaging plate. Please contact to the responsible beamline scientist, if you want to do extremely low-temperature g cryostat (< 100 K), high temperature using furnace (<1300 K, Heating stage< 1647K), and In situ powder X-ray diffraction experiment under and vapor adsorption/desorption. Bending magnet (12-37 keV)		
	BL04B1 : High Temperature and High Pressure Research	X-ray diffraction measurements and radiography under extreme conditions using large- volume press		
4	Large-volume press (SPEED-1500, SPEED-Mk.II), AC/DC power supply for resistance heating, Energy-dispersive X-ray diffractometer, 2D X-ray CCD detector, High-speed CCD camera, Ultrasonic velocity measurement system, Bending magnet [white, 20-150 keV; Si(111), 30-60 keV]			
	BL04B2 : High Energy X-ray Diffraction	Structural analysis of glass, liquid, and amorphous materials		
5	High-throughput PDF measurement system, automatic sample-exchanger (50 samples, 100-1100 K), low/high temperature system with nitrogen gas blowing, X-ray PDF diffractometer and area flat panel detector for amorphous materials (Cryostat (20 K-RT), high-temperature furnace (~1,300 K), Aerodynamic levitation system (1,200~3,200 K)) Bending magnet [Si(511) 113 keV; Si(220), 61.4 keV]			

No.	Beamline name	Research areas		
Experim	nental station/system			
Light so	urce (energy range at sample position, etc.)			
	BL08W : High Energy Inelastic Scattering	Magnetic Compton scattering, High-resolution Compton scattering, Compton scattering		
		imaging, High-energy X-ray scattering, High-energy X-ray fluorescence analysis (XRF), Time-		
6		resolved pair distribution function analysis (PDF)		
	Magnetic Compton scattering spectrometer, High-resolution Compton scattering spectrometer, High-energy X-ray fluorescence spectrometer, Flat			
	area panel detector, Elliptical multipole wiggler	(Station A, 110-300 keV; Station B, 100-210 keV)		
	BL09XU : HAXPES I	Resonant hard X-ray photoelectron spectroscopy(HAXPES), Polarization-dependent HAXPES		
		using diamond phase retarder, Depth analysis of electron state, Materials science and applied		
		materials science		
	In-vacuum undulator (4.9-100 keV)			
	\cdot Double channel cut monochromator(DCCM):	• Double channel cut monochromator(DCCM): Si 220 x 2, Si 311 x 2 (hn=4.9-12 keV, Tunable photon energy) / CCM Si 333,444,555 (hn=6,8,10		
	keV, Fixed energy)			
7	Double X-ray phase reterdar: Polarization change (hn=5.9-9.5 keV)			
	• Experimental hutch 1: High-energy-resolution photoelectron spectroscopy by hard X-ray excitation			
	• Experimental hutch 2: Depth analysis of in-solid and interface electron states			
	· Spot size: 1.5 μm(V)×20 μm(H) (EH1), 1.5 μm(V)×11 μm(H) / 1.5 μm(V)×1 μm(H)* (EH2)			
	(* Users who wish to use the $\Phi1 \ \mu m$ focusing and/or mapping of photoelectron should contact the Beamline Scientist before applying for			
	beamtime.)			
	• Temperature range of sample: ~20-400 K (Liquid He flow is used for cooling)			
	BL10XU : High Pressure Research	Crystal structure analysis under high pressure using diamond-anvil cells, in-situ/operando		
		observation of phase transition and compression behavior under extreme conditions, Material		
		sciences under extreme conditions, High pressure Earth and planetary science		
	• Systems for high pressure experiments using diamond anvil cells (<500 GPa) : X-ray flat panel detector, Imaging plate, photon-counting pixel			
	detector with CdTe sensor, Ionization chamber, PIN PD, X-ray focusing lens, Multi-channel collimator, Raman spectroscopy system, pressure			
8	measurement system for ruby fluorescence method, Cryostat for high pressure experiment (7-300 K), Laser heating system (1,500-6,000 K),			
	Resistive heating system (300-1,000 K), Gas pressure controller for gas membrane DACs			
	(Please contact to BL scientists about using high speed photon-counting detector, Multi-channel collimator system, and/or Resistive heating system before application.)			
	• In-vacuum undulator and Si (111)/ Si (220) double crystals: 6-61 keV			
	• Typical focused X-ray beam size: \sim 20 µm(H, V) (EH1), 0.8 µm(V)× 0.9 µm(H) / 1.8 µm(V)×2 µm(H) / 7 µm(V)×9 µm(H) (EH2)			
	$\frac{1}{2} + \frac{1}{2} + \frac{1}$			

No.	Beamline name	Research areas	
Experim	ental station/system		
Light so	urce (energy range at sample position, etc.)		
	BL13XU : X-ray Diffractions and Scattering I Experimental hutch 1: Versatile Six-axis Diffractomet	X-ray diffraction and reflectivity measurements, Atomic-scale structural analysis of crystal surfaces and interfaces, ultrathin films, and nanostructures, Residual stress measurement, Time-resolved X-ray diffraction, In-situ process observation using X-ray diffraction, Operando X-ray diffraction, High-resolution powder X-ray diffraction and X-ray total scattering, Structural refinement using Rietveld analysis, In-situ/operando powder X-ray diffraction, Time-resoluved powder X-ray diffraction, Analysis of local structures using nanodiffraction	
	Experimental hutch 2: Diffraction measurement mult		
	Experimental hutch 3: High-resolution powder X-ray	diffraction	
	Experimental hutch 4: Nanobeam X-ray diffraction sy	/stem	
9	Si 111/ 311 double-crystal monochromator Experimental hutch 1: 6-axis X-ray diffractometer (HUBER)/ C-type χ cradle (4 axes for sample, 2 axes for detector), Sample stage (XYZ and swivel), Double slit, Soller slit, Analyzer crystal, Thin film sample heating device (Anton Paar DHS1100, room temperature to 1100°C), Thin film sample heating and cooling device (Anton Paar DCS500, -180 to 500°C), Small tensile tester (MAX load: 200 N, 2 kN), Various ample atmosphare(Vacuum, N2, He, Al)		
		detector (6-module of MYTHEN), 2D detector (PILATUS(Si) 300K, 2M)	
	Experimental hutch 3: Powder Diffractometer equip detector (XRD1611, 400 x 400 mm ²). Sample Chang various operand measurements(θ , XYZ), low- or high for capillary, Please contact to the responsible beaml temperature using Anton Paar furnace and Linkam f and vapor atmosphere.	Robot arm for a detector, 2D detector (PILATUS X 300K, PILATUS X 2M) ed with six 2D CdTe photon-counting pixel detectors (Lambda 750 K), Large Area Flat panel ger / Automatic measurement system (100 sample, 100 - 1100 K), Large area load table for n-temperature N2 gas streams devices(90 - 473 K, RT - 1100 K), Remote gas handling system ine scientist, if you want to do extremely low-temperature using cryostat (4 - 300 K), high lat plate furnace(~1300 K, ~1700 K), and In situ powder X-ray diffraction experiment under gas ystem, Fresnel zone plate, X-ray compound refractive lenses, HyPix-3000, Ionization chamber, Pi	

No.	Beamline name	Research areas	
Experime	ental station/system		
Light sou	ight source (energy range at sample position, etc.)		
	BL14B2 : XAFS II	X-ray imaging, XAFS in a wide energy range (5-72 keV), XAFS of dilute systems and thin films, Time-resolved XAFS by quick scan (Time-resolved QXAFS)	
10	X-ray imaging camera, XAFS measurement system, Ionization chamber, 19-element Ge solid-state detector (SSD), 7-element SDD, Lytle detector, Conversion electron yield (CEY) detector, Cryostat (10 K-RT), High-temperature cell for transmission (RT-1,000 °C), High-temperature cell for fluorescence (RT-800 °C), Gas supply and exhaust system [Users who wish to use the system should contact the Beamline Scientist (Honma) before applying for beamtime.] Bending magnet (5-72 keV)		
	BL19B2 : X-ray Diffractions and Scattering II	Residual stress measurement, Structural analysis of thin film, surface and interface, Powder X-ray diffraction, X-ray topography, Ultrasmall-angle X-ray scattering	
11	Versatile High-throughput diffractometer (powder diffractometer), 6-axis X-ray diffractometer (HUBER)/ C-type χ cradle (4 axes for sample, 2 axes for detector), Sample stage (XYZ and swivel), Double slit, Soller slit, Analyzer crystal, Thin film sample heating device (Anton Paar DHS1100, room temperature to 1100°C), Thin film sample heating and cooling device (Anton Paar DCS500, -180 to 500°C), Small tensile tester (MAX load: 200 N, 2 kN), Various ample atmosphare(Vacuum, N2, He, Al), Scintillation detector (FMB, LaBr3), Ion chamber, 1D detector (6-module of MYTHEN), 2D detector (PILATUS(Si) 300K), Small-angle X-ray scattering (SAXS) camera with a camera length of 0.7 - 40 m. For powder diffraction and SAXS experiment, fully-automated sample changers are available.		
	BL20XU : Medical and Imaging II	X-ray micro-/nano-imaging: micro-CT, nano-CT (15-37.7keV), refraction/phase contrast imaging, X-ray diffraction tomography (XRD-CT), microbeam/scanning x-ray microscope Research and development of X-ray optics and optical elements, coherent X-ray optics Ultra small-angle X-ray scattering (USAXS, 23keV)	
12	High-precision diffractometer for various types of imaging, Liquid-nitrogen-cooled Si(111) double-crystal monochromator (7.62-37.7 keV) or Si(220) double-crystal monochromator (~61 keV), Middle-length undulator beamline (245 m), Beam size: 1.4 mm(H) x 0.7 mm(V) at 1st experimental hutch and 4 mm(H) x 2 mm(V) at 2nd experimental hutch, High-resolution X-ray imaging detectors (resolution ~1µm), Large view field X-ray imaging / XRD detectors (maximum FOV 40mm, resolution 10-20µm), Imaging intensifier (Be window, 4-inch type), Grove box for preparing samples (dew point about -60 degrees. installed in the downstream hutch outside the storage ring building. Ar atmosphere is available and N2 atmosphere also can be used if necessary. Users who wish to use them should contact the Beamline scientist beforehand at least 2 weeks), Integrated measurement including micro-/nano-CTs, XRD and microbeam is available (prior consultation with beamline scientist required) USAXS (23keV, $3.6x10^{-4} < q < 2.9x10^{-3} [1/Å]$, for smaller q-value than $3.6x10^{-4}$ prior consultation with beamline scientist required)		

No.	Beamline name	Research areas	
Experim	ental station/system		
Light so	ht source (energy range at sample position, etc.)		
13	BL20B2 : Medical and Imaging II	X-ray micro-CT/laminography, X-ray phase tomography, X-ray real-time imaging(absorption or refraction contrast), ultra-fast X-ray radiography and X-ray micro-angiography. Small- animal experiments for medical research. Research and development of basic techniques for evaluation of optical devices and X-ray imaging	
	High-precision stages for X-ray imaging, General-porpose experimental tables, Long-stroke sample/detector stages, High-resolution X-ray imaging detector (resolution, 1 ~ 10 μm), Wide field of view X-ray imaging detector (50 mm in width), Large-area X-ray imaging detector (flat panel), Medium-length beamline (215 m), Maximum beam size [experimental hutches 2 and 3, 150 mm(H) × 15 mm(V); experimental h1utch 1, 30 mm(H) × 4 mm(V)], Bending magnet (Standard crystal monochromator: 8-72 keV, multilayer monochromator: 40keV, 110keV)		
	BL25SU : Soft X-ray Spectroscopy of Solid	Circular polarized soft X-ray beam generated by twin-helical undulator. Research on electronic states by photoemission spectroscopy (PES), Research on electronic band structures by angle-resolved photoemission spectroscopy (ARPES), Study of magnetic states by magnetic circular dichroism (MCD) of soft X-ray absorption, Analysis of surface atomic arrangement by photoelectron diffraction (PED), Nano-spectroscopic analysis using low- energy/photoemission electron microscope (SPELEEM).	
14	A branch: Retarding field analyzer (RFA), Micro-focused soft X-ray PES, Low-energy/photoemission electron microscope B branch: MCD measurement system, Pulsed-magnet XMCD measurement system (In the end of 2022B term, the Nano-XMCD finished operation for public use.) (A branch, 0.12-2 keV; B branch, 0.2-2 keV) Contact the Beamline Scientist of BL25SU before applying for beamtime for cases (1)-(4) below. (1) When you use RFA (2) When you wish to carry out experiments using carry-in devices (3) When you plan to use pulsed-magnet XMCD apparatus (4) When you plan to use SPELEEM apparatus		

No.	Beamline name	Research areas		
Experim	ental station/system			
Light sou	ight source (energy range at sample position, etc.)			
	BL27SU : Soft X-ray Photochemistry	Soft X-ray photoabsorption spectroscopy of dilute samples in partial fluorescence yield mode, Surface and interface analysis using depth-resolved Soft X-ray photoabsorption spectroscopy, Soft X-ray photoabsorption spectroscopy under ambient atmospheric pressure, Spectroscopy using soft X-ray microbeam, Observation of electron state in solids by soft X-ray emission spectroscopy		
	B branch: High-energy soft X-ray beam (2.1-3.3	keV) using Si(111) crystal monochromator		
15	-X-ray fluorescence analyzer -Scanning soft X-ray microspectroscopy	ron yield mode and partial fluorescence yield mode)		
		C Branch: Low-energy soft X-ray beam (0.17-2.2 keV) using grating monochromator		
	-Soft X-ray photoabsorption spectrometer (electron yield mode and partial fluorescence yield mode) -Soft X-ray photoabsorption spectroscopy under ambient atmospheric pressure (Users who wish to use the system should contact the Beamline Scientist (Nitta) before applying for beamtime.) - Soft X-ray emission spectrometer			
	BL28B2 : White Beam X-ray Diffraction	White X-ray diffraction: X-ray topography, Energy-dispersive strain measurement		
		High energy (~200 keV) X-ray microtomography, Automatic high-energy X-ray micro-CT system High-speed X-ray imaging		
16	White X-ray topography system, Energy-dispersiv	/e XAFS system, Experimental system for biomedical application experiments, Multipurpose		
	diffractometer			
	Bending magnet (White, \geq 5 keV)			
	Beam size: 50 mm(H) x 5 mm(V) @white beam, 50 mm(H) x 1.5 mm(V) @200keV			
	BL35XU : Inelastic and Nuclear Resonant Scat	tering Phonons in solids and atomic dynamics in disordered materials by inelastic X-ray scattering. Atomic and molecular dynamics by nuclear resonant inelastic scattering and quasi-elastic scattering. Synchrotron-radiation-based Mössbauer spectroscopy. Nuclear excitation.		
	Inelastic X-ray Scattering (IXS) (~1 to 100 nm ⁻¹ , 12 analyzers)			
17	In-vacuum undulator (17.794 and 21.747 keV, Resolution: 3.0 and 1.5 meV)			
	· Spot size: ~Φ80 μm (Φ20 μm with KB setup)			
	Nuclear Resonant Scattering (NRS): Nuclear inelastic scattering spectrometer, Time-domain/Energy-domain Mössbauer spectrometer, Quasi-elastic			
	scattering spectrometer using time domain interferometry			
	In-vacuum undulator (14.4 - 27.8 keV, 43.0 - 100 keV)			
	\cdot Spot size: ~50 (H) × 25 (V) µm at 14.4 keV			

No.	Beamline name	Research areas		
Experim	ental station/system			
Light sou	ight source (energy range at sample position, etc.)			
	BL37XU : Trace Element Analysis	X-ray microbeam/nano-beam spectrochemical analysis, X-ray spectroscopic imaging,		
		Ultratrace-element analysis, High-energy X-ray fluorescence analysis		
		Projection/scanning/imaging XAFS microscopy, High brightness XAFS, Coherent diffraction imaging XAFS microscopy		
	XAFS measurement system, Scanning X-ray mi	croscope, Imaging X-ray microscope, X-ray tomography system, Multipurpose diffractometer, X-ray		
18	fluorescence analyzer, Bend crystal Laue analyz	zer, X-ray shutter		
	Ionization chamber, PIN photodiode, 1-eleme	nt Ge solid-state detector, 7-element Si drift detector, Indirect conversion X-ray image detector (High		
	speed CMOS camera), Flat-panel detector, 2D pixel array detector			
	In-vacuum undulator, Liquid-nitrogen-cooled double-crystal monochromator (Si(111): 4.5~37.7 keV, Si(511): 12~113 keV), Higher harmonics			
	rejection mirrors (Pt/Ru coated, bent flat mirror for horizontal forcusing)			
	Beam size: 1 mm(H)×0.7 mm(V), 100 nm(H)	Beam size: 1 mm(H)×0.7 mm(V), 100 nm(H)×100 nm(V) (W.D. = 100 mm, 5~55 keV), 500 nm(H)×300 nm(V) (W.D. = 300 mm, 5~30 keV)		
	BL39XU : Magnetic Materials	X-ray magnetic circular dichroism (XMCD) spectroscopy and element-specific magnetometry		
		(ESM), X-ray emission spectroscopy (XES) and its magnetic circular dichroism, XMCD		
		magnetic imaging and local ESM using micro/nanobeam, XAFS microscopy and local ESM,		
		XAFS and XMCD at high pressure, X-ray spectroscopy using variable X-ray polarization		
		(horizontally/perpendicularly linear or circular)		
	Diamond circular polarization element (X-ray phase retarder, operable at 5-23 keV)			
10	XMCD spectrometer + Magnetic field generator [electromagnet (3.5 T), superconducting magnet (7 T, 2 K)]			
19	X-ray emission spectrometer(incident X-rays: 4.92-19 keV, emission X-rays: 4.4-18 keV)(*,**)			
	Cryogenic device [helium-flow cryostat (11-500 K), superconducting magnet (2-300 K), pulse-tube-type cryostat (4-300 K)(*)]			
	High-pressure generator (DAC, atmospheric pressure-180 GPa at RT, atmospheric pressure-40 GPa at low temperature)(*)			
	KB focusing mirror for high-pressure XMCD (beam size, 2(vertical) x 9(horizontal)µm; W.D.=400 mm; 5-9.5 keV)(*)			
	KB focusing mirror for microscopic XMCD and XAFS (beam size, 100-300 nm; W.D.= 80 mm; 5-16 keV)(*)			
	(*)Users who wish to use these devices should contact the Beamline Scientist before applying for beamtime.			
	(**)Some energy ranges are not available.			
	(**)Some energy ranges are not available.			

No.	Beamline name	Research areas	
Experim	ental station/system		
Light so	urce (energy range at sample position, etc.)		
	BL40XU : High Flux	Fast time-resolved X-ray diffraction and scattering experiments, X-ray photon correlation spectroscopy, X-ray fluorescence analysis, Microbeam X-ray diffraction and scattering experiments, Micro-crystallography	
20	Experimental hutch 1: X-ray shutters, Fast CMOS video camera (Orca-Flash 4.0 (Hamamatsu), FASTCAM Mini AX200(Photron), FASTCAM NovaS16(Photron), Flat-panel detector(C9728DK-10, Hamamatsu), Pilatus3 X 100kA (Dectris), Eiger2 S 500k(Dectris), X-ray image intensifier (4 inches, Hamamatsu), Nd:YAG laser (Surelite II-10, Continuum), Small-angle scattering vacuum path (maximum sample/detector distance, 3.5 m), Pinhole optics (typically \geq 5 µm, 2 µm in special cases), Stopped-flow mixing system (SFM-4000S, BioLogic) Experimental hutch 2**: Precision diffractometer, Zone-plate-focusing optics, femtosecond-laser system, EIGER 1M *Helical undulator (8-17 keV) *Beam size at sample: 250 µm (H) x 40 µm (V) *Flux: 10^15 photons/s (12 keV) *Quasi-monochromatic beams ($\Delta\lambda/\lambda$ =2%) without the need of a monochromator		
	**Please contact the beamline scientist, if you submit the beamline proposal for the first time and want to use own experimental devices.		
21	BL40B2 : SAXS BM Small-angle X-ray scattering (SAXS) Small-angle scattering camera [Vaccum path length, 250, 500, 1000, 1500, 2000, 3000, 4000, 6000(*) mm] Pixel array detector (Pilatus3S 2M, Pilatus100KS and Eiger2 S 500K Dectris Ltd., ModuPIX ADVACAM) Imaging plate ditector (R-AXIS VII(*), Rigaku Corporation) Flat-panel detector (C9728DK-10, Hamamatsu Photonics K.K., for wide angle) Switching mechanism system between SAXS and WAXS (SAXS: 1500, 2000, 3000, 4000 mm for Pilatus2 S 2M; WAXS: 85-170 mm for Eiger2 S 500K) Sample-environment equipment: Temperature control (HCS302 and TS62 Instec Inc., 10002L Linkam Sci., Mechanical characterisation system(*)		
	 (10073L Linkam Sci.), DSC(*) (FP84HT, Mettler-Toledo International Inc.), DSC(*) (Rigaku Corporation)), Nitrogen gas generator (maximum flow rate: 5 L/min), Automatic cell cleaning system and sample changer(*) (BioCUBE, Xenocs Inc.), Liquid Chromatograph(HPLC)(*) (Prominence, Shimadzu Corp.) Bending magnet (6.5-22 keV) (*)Users who wish to use these devices should contact the beamline scientist before applying for beamtime. 		

No.	Beamline name	Research areas	
Experim	ental station/system		
Light sou	arce (energy range at sample position, etc.)		
	BL41XU : Macromolecular Crystallography I	Macromolecular crystallography, Micro-crystallography, Ultra-high resolution structural	
		analysis	
	Diffractometer for macromolecular crystallography		
	In-vacuum undulator (normal mode, 6.5-17.7 keV; *high-energy mode, 19-35 keV)		
	Beam size (at sample position): 5(H) × 5(V) μ m ² ~ 50(H) × 50(V) μ m ² (normal mode), 30 × 30 μ m ² ~ 300 × 300 μ m ² (high energy mode)		
	Hybrid photon counting detector EIGER X 16M (normal mode), EIGER2 X CdTe 4M (high-energy mode)		
22	Cryo-cooler (N2 gas, ≥100 K; He gas, ≥20 K)		
22	Peltier-cooled silicon drift detector		
	SPring-8 precise automatic cryo-sample exchanger (SP	PACE)	
	*Users who wish to use the high-energy mode should	contact the Beamline Scientist before applying for beamtime.	
	Public use of cryogenic transmission electron microsco	ppes, EM01CT (CRYO ARM 300) and EM02CT(CRYO ARM 200), have started in 2021B as an	
	ancillary facility.		
	Please check the following Web-site before using the beamline.		
	http://stbio.spring8.or.jp/index_en.php		
	BL43IR : Infrared Materials Science	Infrared microspectroscopy	
	Wavenumber range: 100-20,000 cm ⁻¹		
	High-spatial-resolution microscope: Objectives (x36(NA=0.5, WD=10 mm), x15(NA=0.4, WD=24 mm), x20(ATR)), Cryostat (4.2 K~400 K),		
23	Temperature controlled stage (-190∼600℃)		
	Long-working-distance microscope: Objective (x8(NA=0.5, WD=50 mm), Diamond anvil cell+Cryostat (0.4 mm culet/30 GPa, 10~400 K), Cryostat		
	(4.2~400 K)		
		WD=40 mm), Magnetic field 14 T, Cryostat (4.2~300 K)	
	BL45XU : Macromolecular Crystallography II	Macromolecular crystallography, Micro-crystallography, Automation & High throughput data collection for protein crystallography	
	Diffusate materia for magne malogular an stalle graphy		
	Diffractometer for macromolecular crystallography		
	In-vacuum undulator (6.5-16.0 keV)		
24	Beam size (at sample position): 5(H) × 5(V) μm² ~ 50(H) × 50(V) μm² Hybrid photon counting detector PILATUS 6M		
	Cryo-cooler (N₂ gas, ≥100 K)		
	SPring-8 precise automatic cryo-sample exchanger (SPACE)		
	Please check the following Web-site before using the beamline.		
	http://stbio.spring8.or.jp/index_en.php		

No.	Beamline name	Research areas		
Experim	xperimental station/system			
Light so	urce (energy range at sample position, etc.)			
	BL46XU : HAXPES II	Hard X-ray photoemission spectroscopy		
		Ambient Pressure Hard X-ray Photoemission Spectroscopy		
	In-vacuum undulator (5.5-37 keV)			
	Double channel cut monochromator(DCCM): Si 220 x 2, Si 311 x 2			
25	Experimental hutch 1: Hard X-ray photoelectron spectroscopy			
25	Hard X-ray photoemission spectroscopy system (Scienta Omicron R4000-10kV), hn=6, 8, 10 keV, Spot size: 1 μm(V)×30 μm(H)			
	Experimental hutch 2: Ambient Pressure Hard X-ray Photoemission Spectroscopy			
	Hard X-ray photoemission spectroscopy system (Scienta Omicron R4000-Hipp2), hn=6, 8, 10 keV, Spot size: 1 µm(V)×10 µm(H), Measurement in			
	gas atmosphere*			
	*Please contact to beamline scientists regarding the type of gas and pressure.			
	BL47XU : Micro-CT	X-ray optics, Planetary science, Materials science, Applied materials science		
26	In-vacuum undulator (5.2-37.7 keV, horizontal polarization)			
20	High-spatial-resolution micro-tomography system, High speed imaging system, Hard X-ray microbeam/scanning microscopy experiment			
	Please contact to beamline scientists before putting on a new proposal to BL47XU.			

■ RIKEN Beamlines

No.	Beamline name	Research areas		
Experim	Experimental station/system			
Light sou	arce (energy range at sample position, etc.)			
	BL05XU : R&D-ID I	Strucutural analysis by small and wide angle X-ray scattering		
	Photon energy: 7~15 keV			
27	Photon flux < 1×10^{13} photons/s (12.4 keV)	Photon flux $< 1 \times 10^{13}$ photons/s (12.4 keV)		
	Sample-to-detector distance: ~10 cm - 4 m			
	For other conditions and facilities, contact the Beamline Scientist beforehand.			
	BL07LSU : R&D-ID II	Development of soft X-ray optical system requiring long undulator radiation		
	6-segment horizontal and vertical figure-8 undulator, energy range 250~2000 eV (horizontal and vertical polarization)			
	Energy resolution (designed value) $E/\Delta E > 10^4$			
28	Beam height 1417 mm			
20	Beam size > several mm (without refocusing mirror)			
	Flux >10^11 ph/sec/0.01%BW			
	When applying for public use of BL07LSU, it is i	necessary to have a meeting with the BL representative (RIKEN M.Oura : oura@spring8.or.jp) in		
	advance.			

No.	Beamline name	Research areas	
Experime	ental station/system		
Light sou	rce (energy range at sample position, etc.)		
	BL17SU : RIKEN Coherent Soft X-ray Spectroscopy	>Scanning soft x-ray spectromicroscope A3 station	
		Microspectroscopic observation of sample surface under conditions ranging from low	
		vacuum to helium atmosphere is available.	
		>Versatile photoemission electron microscope Bc station	
		Electronic/magnetic states imaging (resolving power: better than 100 nm) and its time-	
		resolved measurements	
29		es (225* - 2,000 eV) (*225 eV for Circularly polarized light, 272 eV for Horizontally polarized	
	light, 136 eV for Vertically polarized light) , Energy re	esolution (E/dE ~10,000), Beam size at sample position [~30 μ m(H) × 4 μ m(V)]	
	Before applying for public use of BL17SU, contact the following persons in charge of respective equipment.		
	Scanning soft x-ray spectromicroscope: Suga (hiroki-suga@spring8.or.jp) at JASRI/RIKEN, Oura at RIKEN (oura@spring8.or.jp)		
	versatile photoemission electron microscope: Ohkochi (o-taku@spring8.or.jp) at JASRI/RIKEN		
	Free space where users can bring their systems: Oura (oura@spring8.or.jp) at RIKEN		
	BL19LXU : RIKEN SR Physics	Research on physical science requiring ultrahigh-brilliance X-ray beam from long undulator	
	Experimental station/system: $5(W) \times 3.4(D) \times 4.5(H)$	m ³ open hutch, Optical bench, PIN photodiode, Scintillation counter, Ionization chamber,	
30	Stepping motor drivers and controllers, NIM Bin power supply, Counter, Trigger signal synchronized with RF of storage ring		
	Light source (energy range at sample position, etc.): In-vacuum undulator (7.1-18 keV, 22-51 keV, flux of ~1014 photons/s at 12.4 keV)		
	For other conditions and facilities, contact the Beamline Scientist beforehand.		
	BL26B1 : RIKEN Structural Genomics I	Structural biology research based on single-crystal X-ray diffraction	
	Area detector [Dectris EIGER X], Goniometer with horizontal spindle axis, Blowing cryo-cooler (95 K-RT), Sample changer SPACE, Bending magnet		
31	(6.5-15.5 keV)		
	Please check the following Web-site before using the beamline.		
	http://stbio.spring8.or.jp/index_en.php		
	BL29XU : RIKEN Coherent X-ray Optics	Research on physical science using long beamline and coherent X-ray beam	
	Experimental station/system: Open hutches with size c	of 5(W) × 3(D) × 3.3(H) m ³ [EH1], 10(W) × 4.25(D) × 4.5(H) m ³ [EH2], 8(W) × 4(D) ×	
	3.3(H) m ³ [EH3], and $6(W) \times 3(D) \times 3.3(H)$ m ³ [EH4], Optical benches, PIN photodiodes, Scintillation counters, Ionization chambers, Stepping		
32	motor drivers and controllers, NIM Bin, Power supply, Counter, Visible-conversion X-ray camera, Trigger signal synchronized with RF of storage ring		
	Light source (energy range at sample position, etc.): In-vacuum undulator (1st order harmonics : 5-19 keV, 3rd order harmonics : 15-56 keV, flux		
	of $\sim 6 \times 10^{13}$ photons/s at 10 keV), silicon monochromator(111 plane)(4.4 ~ 37.8 keV) For other conditions and facilities, contact the Beamline		
	Scientist beforehand.		

No.	Beamline name	Research areas
Experim	ental station/system	
Light so	urce (energy range at sample position, etc.)	
33	BL32XU : RIKEN Targeted Proteins	Structural biology, X-ray crystallography for biopolymer, Micro-crystallography for ultrafine
		proteins
	Experimental station/system: EEM focusing mirror unit, Ultralow-eccentricity high-precision goniometer, Ultralow-temperature He blower, Hybrid	
	photon counting detector (DECTRIS EIGER X 9M), Large-volume sample mounting robot with applicability to Hampton pins	
	Light source (energy range at sample position, etc.):	
	[Light source] Hybrid undulator	
	[Beam size at sample position] $1 \times 1-10 \times 10 \ \mu m^2$	
	[Flux of 1 μ m beam] 7 × 10 ¹⁰ photons/s at 12.4 keV	
	[Energy range] 9-18 keV (If you prefer to use lower energy X-ray than 9 keV, please contact us)	
	Please check the following Web-site before using the beamline.	
	http://stbio.spring8.or.jp/index_en.php	
34	BL36XU : RIKEN Materials ScienceII	Time-resolved QXAFS using tapered-Undulator beam
	[Energy region] 4.5-35 keV, [beam size] 40 μm(V)×500 μm(H), 100 nm(V)×100 nm(H), [time resolution] QXAFS(20 ms).	
	[light source and optics] In-vacuum tapered undulator, channel-cut crystal monochromators (Si(111), Si(220)), Rh/Pt coated vertical/horizontal	
	focusing mirrors, Rh/Pt coated KB mirrors(4.5-35 keV).	
	[Measurement system] Transmission XAFS measurement system, 4-element SDD, PILATUS 300KW, 4-element Merlin detector, indirect X-ray image	
	detector In BL36XU, only Quick XAFS apparatus is open for public use. When you apply for public use of BL36XU, please contact to the beamline staff	
	beforehand.	
35	BL38B1 : RIKEN Structural Biology I	Small Angle X-ray Scattering
	Bending Magnet(6.5~15.5 keV) * User opereation	
	Camera length; 300, 2500 mm	
	Detector; DECTRIS PILATUS3X 2M., HPLS system for SEC-SAXS	
	*Use only BioSAXS.	
36	BL43LXU : RIKEN Quantum NanoDynamics	meV Scale IXS for atomic dyanmics
	Energy: 14.4-26 keV (Fundamental), meV Spectrometer for atomic dynamics	
37	BL44B2 : RIKEN Materials Science I	Structural analysis of periodic and aperiodic systems by total scattering
	Wavelength: 0.41~0.8 Å	
	Instrument: Two-axis powder diffractometer (2 $ heta$ range: 0.5 \sim 153°, 2 $ heta$ step: 0.01°)	
	Temperature: -180∼800 ℃	