電子の波動関数操作によりピコ秒以下の超高速で磁化制御を実現 一テラヘルツ周波数帯で動作する低消費電力スピンデバイスに向けて一

東京大学 工学系研究科 電気系工学専攻

スピントロニクス学術連携研究教育センター

レ デゥック アイン、小林 正起、田中 雅明

Abstract

強磁性体の磁化をサブピコ秒 (サブ ps) の時間スケールで制御することは、スピン自由度を利用する超高速電 子デバイスの実現につながることが期待される。これまでの磁化 (スピン) ダイナミクス研究では、磁化の超高 速制御は強磁性体の d 軌道または f 軌道に多数のキャリアを光学的に励起することで実現されてきたが、ゲート 電圧によって実現することは極めて困難であった。本研究では、s (または p) 電子の空間分布を決める波動関数 を光照射による内部電界によって制御し、キャリア密度を変化させる必要のないサブ ps で磁化操作する新しい 方法 (波動関数工学と呼ぶ)を実証した。具体的には、強磁性半導体 (FMS) (In,Fe)As 超薄膜を含む III-V 族半 導体量子井戸構造にフェムト秒 (fs) レーザパルスを照射し、量子井戸中の 2 次元電子の波動関数が急速に移動 するときに、600 fs という先行研究の 300 分の 1 の非常に短い時間で磁化が増大することを観測した。この波 動関数制御法は、ゲート電界の印加でも実現できるため、本研究の結果は、次世代エレクトロニクスに向けて超 高速で動作する磁気メモリやスピンを用いた情報処理を実現する新しい道を開くものである。

1. 研究背景

強磁性材料がもつ「不揮発性」「再構成可能」という 特長と機能を「高速度演算」を担う半導体集積回路に融 合することにより、高速かつ低消費電力で動作するスピ ン機能半導体デバイスを実現することが期待されてい る¹¹。このようなスピンデバイスの出力は強磁性体の磁 化(スピン)の向きで制御されるが、磁気ランダムアク セスメモリ(MRAM)を代表とする最も研究が進み実 用化されているスピンデバイスでは、磁化反転は速くて も数ナノ秒 (ns) 程度であり、従来の半導体トランジス タ (MOSFET) の動作速度より一桁程度も遅い。また、 MRAMでは磁化を反転させ書き込みを行うために電流 駆動による磁化制御法が用いられているが、10⁶~10⁷ A/cm²という極めて高い電流密度を必要とするため、大 量の電力を消費する。将来のスピンデバイスでは、これ らの問題を解決し高速かつ低消費電力で磁化を制御す る方法を確立する必要がある。特に、スピンデバイスを 現在の CMOS の動作速度を超える THz 周波数で動作 できるようになることが望ましく²²、そのためには強 磁性体の磁化をサブピコ秒 (サブ ps)の時間スケール で制御することが必要になる。さらに、基礎研究の観 点から、このような超高速時間スケールでスピンダイ ナミクス現象を調べることにより、交換相互作用やス ピン軌道相互作用など、強磁性体におけるさまざまな 磁気結合の基礎となるメカニズムを明らかにするこ とができると期待される。

これまでの超高速スピンダイナミクスの研究では、 磁性材料を励起するために強い強度を持つ fs パルス レーザを照射し(この操作は光ポンピングと呼ばれ る)、それと同期した別のレーザパルスで磁化の変化 を観察する(この操作はプローブと呼ばれる)ポンプ・ アンド・プローブ法が一般的に使用されている。その 際、電荷、スピン、格子振動(フォノン)の間で非平 衡な熱的相互作用と熱によらない相互作用が発生す る³³。これらの過程によって、消磁現象^[413]、磁気歳差 運動11419、光照射による磁化反転120-27、磁化の増大128,291、 サブ格子間におけるスピントランスファー^[30-35]、磁気 相転移^[36-38]など、金属、半導体、絶縁体のさまざまな強 磁性材料における超高速現象、ときにはサブ ps の磁 化制御が報告されている。光は材料のスピン自由度と ほとんど相互作用しないが、強い fs レーザパルスを 照射すれば瞬時に大量の光キャリア(正孔、電子)を

強磁性材料中に生成することができる。これにより電 子温度が上昇し、その結果、電荷-スピン、電子-フ ォノン、電子ーマグノンの相互作用を介してスピン温 度と格子温度が上昇し、磁化の変化が起こると考えら れる³³。レーザ光のエネルギーが物質中のバンド間遷 移と共鳴すると、レーザパルス照射により直接 d 軌道 またはf軌道のスピン偏極バンドにキャリアを励起し、 瞬間的な磁化増大^[29]またはサブ格子間のスピントラ ンスファー^[30-35]を引き起こす。場合によっては、レー ザパルスの電場が材料の磁気特性に直接影響を与え る^[3942]。これらの実証実験は、光で制御する超高速ス ピンエレクトロニクスに応用できると期待される。一 方、このような超高速スピンダイナミクスを、すでに 確立している半導体デバイス技術および大規模集積 化が可能な現在の CMOS 集積回路に実装することが 強く望まれる。しかし、CMOSの基本動作であるゲー ト電圧による電界効果では、光ポンピングのようにキ ャリア密度を瞬時に大幅に変えたり、超高速の時間ス ケールでバンド間の遷移を引き起こしたりすること は不可能である。本研究では、波動関数工学と呼ばれ るサブ ps 磁化操作の新しい手法を、強磁性半導体を 含む半導体量子井戸ヘテロ構造を用いて実証するこ とを目指した。この手法では、フェルミ準位 E におけ る s (または p) 電子の空間分布(波動関数によって 決める)のみを制御し、電子濃度の変化を必要としな いため、ゲート電圧による制御操作と整合性があり、 将来の超高速スピンエレクトロニクスへの応用が期 待される。

超高速スピンダイナミクスについてこれまで研究さ れてきた材料の中で、強磁性半導体(Ferromagnetic semiconductor、FMS)は多くの重要な利点を有する。 FMS は、通常の IV 族、III-V 族、または II-VI 族非磁性 半導体に局在スピンの役割を果たす d 軌道または f 軌 道を持つ磁性元素 (Mn、Fe、Eu など)を数%程度以上 添加した混晶半導体である^{(13,44]}。これらの局在スピン(d または f 電子)は、s-d (f)または p-d (f)交換相互 作用を介して遍歴キャリア(s または p 電子)と強く 結合することによって、強磁性秩序が成立すると考え られる^{(45]}。FMS では、強磁性金属とは異なり局在スピ ンとキャリアが明確に分離されているため、スピン-キャリア相互作用が引き起こす様々な物理現象を解

図1 (a)本研究で用いた試料構造。(b) 試料における伝導帯のポテンシャルプロファイルと電子分布。(In,Fe)As (10 nm、Fe 濃度 8%) /InAs (5 nm)から成る二層構造は、電子キャリアの波動関数が二層全体に広がって表面量子井戸(QW)を形成。(c)4K、1Tで測定した MCD スペクトル。InAsの特異点エネルギーE₁での光学遷移に対応する 2.626 eV で大きなピークを示す。図は文献[63]より改変転載。

明するという点で理想的な材料系である。さらに、 FMS は比較的小さいキャリア密度 (10¹⁸~10²⁰ cm³程 度) と長い Thomas-Fermi スクリーニング長により、 レーザ光源を用いた光ポンピングまたはゲート電界 を用いた電気的なキャリア特性の制御が可能である。 FMS の強磁性を超高速で増大させた実験例として、 光ポンピングによって p型(Ga,Mn)Asの磁化を増大 させた報告があり¹²⁸、その時間スケールは 100 ps で あった。(Ga,Mn)As の p-d 交換相互作用の大きさは 約1 eV であるため、ハイゼンベルクの不確定性原理 によるキャリアの濃度変化に対する磁化変化の最短 時間は1 fs 程度と考えられ、上記の100 ps という時 間ははるかに長い。この磁化増大が遅い理由として、 (Ga,Mn)As の磁化を変えるには E_cでの正孔密度の大 きな変化(~10²⁰ cm³)が必要であり、これらの正孔 は高いエネルギーバンドに光生成された光キャリアが ゆっくり緩和した後に E 位置の状態に供給されるた めと考えられる。したがって、より高速で磁化を制御 するためには、FMS におけるキャリアとスピンの相 互作用の物理を明らかにして、キャリア特性をサブps で変調するための新しい手法を開発する必要がある。

さまざまな FMS の中で、III-V 族ベース FMS は最 も広く研究され半導体デバイスとも整合性が良い。中 でも我々が開発した(In,Fe)As は最初の電子誘起 n 型 FMS でありいくつかの有用な特長を有している^[46-50]。 (In,Fe)Asの伝導帯下端に存在する電子キャリアは 40 nm もの長いコヒーレンス長を持つ⁴⁹。したがって、 図 1(a)に示すような薄い(In,Fe)As/InAs 二層構造は、 電子キャリアの波動関数が二層全体に広がって表面 量子井戸を形成する(図 1(b))。この二次元(2D)電 子をもつ強磁性半導体量子井戸構造の重要な特徴の1 つは、キュリー温度(Tc)などの磁気特性が、波動関 数と局在スピン (Fe) の間の空間的重なりによって決 定されることである^[4951]。したがって、波動関数のピ ーク位置と形状を制御することにより、量子井戸に余 分なキャリアを注入しなくても、(In,Fe)As/InAs 量子 井戸の磁気特性を効果的に制御できる。波動関数工学 と呼ばれるこの新しい手法は、キャリア蓄積プロセス がなく、量子井戸内で電子波動関数をわずか数ナノメ ートル移動させるだけであるため、消費電力が極めて 低く⁵⁰¹、動作速度が非常に速くなることが期待される。 本研究では、この超高速波動関数工学が fs パルスレ ーザを使用して実現可能であり、これにより (In,Fe)As/InAs 量子井戸の磁化がサブ ps の時間で増 大することを示す。

2. 実験結果

本研究で用いる試料構造は、半絶縁 GaAs (001) 基板上に分子線エピタキシー法 (Molecular Beam Epitaxy、MBE)を用いて成長した、表面から(In,Fe)As (10 nm、Fe 濃度 8%) /InAs (5 nm) /AlSb (300 nm) /AlAs (5 nm) /GaAs で構成される単結晶ヘテ ロ構造である (図 1(a))。図 1(b)に示すように、 InAs/AlSb 界面の 1.3 eV の伝導帯オフセットと (In,Fe)As 表面の真空ポテンシャル (4.2 eV) がポテ ンシャル障壁の役割を果たし、電子キャリアを (In,Fe)As/InAs 二層構造から成る量子井戸に閉じ込 める。(In,Fe)As/InAs 量子井戸の磁気特性を、可視光 磁気円二色性 (Magnetic circular dichroism、MCD) 分光法を使用して評価した。低温 (5 K) から様々な 温度において(In,Fe)As/InAs 量子井戸の磁化曲線を 反映する MCD 信号の磁場依存性 (MCD-H曲線)

図2 (a)測定系の概念図。(b) µ₀H=-0.4T を垂直に印 加しながら 300K(オレンジ色の円)と 9K(緑 色の円)でサンプル B について測定した強度 *I(χ)*。(c) サンプル A と B について、両方とも 9K で測定された強度 *I(χ)*の比較。図は文献[63] より改変転載。

ロットプロットから、(In,Fe)As/InAs 量子井戸のキュ リー温度(*T*_c) は約17 K であると見積もられる。図 1(c)に示す MCD スペクトルは、InAs の特異点エネル ギー*E*₁での光学遷移に対応する 2.626 eV で大きなピ ークを示す。この *E*₁ピークは、バルク状態に近い厚い (In,Fe)As 試料のピーク(2.610 eV)から 0.016 eV だ け高いエネルギーの方にシフトしている。これは、 (In,Fe)As/InAs 量子井戸における量子化によるバン ドギャップの増大を反映している^{140,50]}。

(In,Fe)As/InAs 量子井戸の磁化を調べるために、 SACLA の直線偏光の軟 X 線自由電子レーザ (X-ray free electron laser、XFEL) ビームを使用して、Fe の M 吸収端と共鳴する 52 eV エネルギーで X 線磁気光 学カー効果 (XMOKE) 測定を行った^[5254]。同じ試料の 2 枚のサンプル (A および B)を2つのネオジム (Nd) 磁石 (磁場の大きさ $\mu_0H=0.4T$ および -0.4T) 上に 接着し、He フロークライオスタットのコールドフィ ンガーに設置した。続いて図 2(a)に示すように、 (In,Fe)As/InAs 量子井戸から反射された後の XFEL ビ ームのカー回転角 $\theta_{\rm K}$ を、多層膜ミラーとマイクロチ ャネルプレート (MCP) で構成される回転アナライザ

最近の研究から

ーエリプソメーターによって検出した。多層膜ミラー と MCP は、サンプル軸に対して角度 χ だけ一緒に 回転される。反射する XFEL ビームの強度 *I*は *I(χ)*~ $\cos^2(\theta_{\kappa} - \chi)$ のように χ の関数として変化するた め、アナライザーと XFEL ビームの偏光面が平行/垂 直のときに最大/最小に達する⁵⁴。図 2(b)は、Nd 磁石 から µ₀H = -0.4 T を垂直に印加しながら 300 K (オ レンジ色の丸)と9K(緑色の丸)でサンプルBにつ いて測定した強度 I(x)を示しており、どちらの曲線も 関数 $\cos^2(\theta_{\kappa} - \chi)$ によくフィッティングできている。 9Kでの曲線は300Kでの曲線から1.15°だけ右にシ フトしている。これは、温度の低下に伴って (In,Fe)As/InAs 量子井戸の強磁性秩序が成立するた め XFEL ビームのカー回転角 θ_κが増大することで理 解できる。さらに、サンプル A と B について、両方 とも9Kで測定した強度 I(x)を図 2(c)で比較してい る。サンプルA ($\mu_0 H= 0.4 \text{ T}$)の曲線は左に、サン プルB ($\mu_0 H$ = -0.4 T) の曲線は右にシフトし、それ ぞれ反対の磁化方向を持つことを反映している。2つ の θ_{κ} 値の差は5.40°であり、そこから(In,Fe)As/InAs 磁化に対応する XFEL ビームのカー回転角は 2.70°で あると見積もられる。磁場を反転することによって得 られる θ_κの変化は、温度を下げた場合に比べて 2 倍 大きい。これらの結果は XMOKE 測定の有効性を示 すものである。

(In,Fe)As/InAs 量子井戸のスピンダイナミクスを 研究するために、ポンプ・アンド・プローブ測定を実 施した。fs パルスレーザ (波長 793 nm、パルス幅 30 fs、エネルギー169 μJ) を使用してフェルミ面近くの s、p 電子系を励起し、XFEL ビームを使用して Fe の 局在スピンの応答を調べた。異なるフォトンエネルギ ーを持つ別々のポンプレーザ光源とプローブレーザ 光源を利用することにより、(In,Fe)As/InAs 量子井戸 におけるスピン・キャリア相互作用の超高速ダイナミ クスを捉えることができる。時間分解測定では、回転 アナライザーの角度 χは5°に固定し、温度は9Kと した。図 2(c)の結果から、サンプル A と B において 磁化 M が増大すると、I(x)曲線がそれぞれさらに左 と右にシフトする。その結果、図3(a)の挿入図に示す ように、サンプルAの場合、磁化の向きに応じて強度 *I*(*χ* = 5°)が増加する。図 3(a)の上部パネルに示す

図3 (a) (上) µ₀H=0.4 T と(下) µ₀H=-0.4 T を 垂直に印加したサンプル A と B を赤外レーザパ ルスでポンプしたときの XFEL ビーム強度の時間 変化。600 fs の時間スケールで瞬時に磁化が増大 したことが分かった(領域 I)。(b)サンプル B の反 射した XFEL ビーム強度の時間変化をより広い範 囲で示す図。測定温度は 9 K である。図は文献[63] より改変転載。

ように、赤外レーザパルスでサンプルAをポンプする と、XFEL ビーム強度は 600 fs の時間スケールで瞬時 に増加(2.8から3.4)(領域I)し、その次の数psで 徐々に飽和してから減少した(領域 II)。これらの結 果は、サンプル A の(In,Fe)As/InAs 量子井戸の磁化 M が lps 未満で増大することを示している。比較の ために、サンプル B についても同様の実験を行った。 ここで、図 3(a)の下のパネルに示すように、M は反対 方向に向いている場合、XFEL ビーム強度は最初が1 ps (領域 I) で 3.5 から 3 に急速に減少し、次の 60 ps で 5~6 に増加した後 120 ps でゆっくりと初期値に 戻った(図3(b))を参照)。サンプルAとBのXFEL ビーム強度の変化の符号が反対になっていることか ら、その変化が実際に(In,Fe)As/InAs 量子井戸の磁化 Mの増大から生じていることを示しており、ポンプレ ーザパルスの光磁気効果に関係する原因を除外でき

FROM LATEST RESEARCH

る。照射により、磁化 M は 600 fs の超高速の時間ス ケールで増大し、その後平衡に戻る前に 40 ps にわた ってゆっくりと減少する。この緩やかな消磁現象は、 サンプル温度を一時的に上昇させるポンプレーザパ ルスの熱効果によるものと考えられる。本研究で観測 した(In,Fe)As/InAs 量子井戸の超高速磁化増大(~ 600 fs) は、これまでに報告された強磁性半導体の磁 化制御の中で最速の値である。

3. 超高速磁化増大の機構

次に、(In,Fe)As/InAs 量子井戸で観察された磁化増 大の考えられるメカニズムについて考察する。キャリ ア誘起 FMS では、磁化増大の考えられる原因の1つ は、フェルミ準位付近のキャリア密度 ((In,Fe)As の 場合はn型なので電子)の増加である。フォトンエネ ルギー1.55 eV (波長 798 nm) の fs レーザパルスを 照射すると、(In,Fe)As/InAs 量子井戸内に大量の光キ ャリア(電子と正孔)が瞬時に生成される。しかし、 生成された光電子は伝導帯底部より1 eV も高いバン ド中に存在するため、伝導帯下端の直下に形成される Fe の不純物バンドの d 電子スピンとの s-d 交換相互 作用に直接関与することができない^{48,55} (図 4(a)参照)。 伝導帯下端までの光電子の緩和には、一般的には数十 ps が必要である³³。したがって、光キャリア生成だけ では磁化 M のサブ ps 増大を説明できない。さらに、 フェルミ準位より上には少数スピンの Fe 関連不純物 バンドしか存在せず¹⁵⁵¹、これらの d 軌道不純物バンド への電子の励起は、試料の磁気モーメントの減少につ ながると考えられる。これは明らかに実験観察と一致 しない。一方、AlSb バッファ層では Γ 点でのバンド ギャップ (2.2 eV) が大きいためポンプレーザでは光 キャリアは生成されず、下層の AISb 層からの超拡散 電流による機構^{56-60]}も否定される。

しかし、成長軸(z軸)に沿った光キャリアの時間 依存の分布により、(In,Fe)As/InAs 量子井戸のポテン シャルと 2D 電子の波動関数が変化し、その磁気特性 が変化する可能性がある。ポンプレーザパルスが照射 されると、光照射により電子と正孔(光電子、光正孔) が即座に生成され(~1 fs)、光照射直後では表面から 基板側に向かって指数関数的に減少する分布を持つ (図 4(a)の右パネルを参照)。このとき、光電子 N_e(a)と

図 4 (a) (In,Fe)As/InAs 量子井戸にポンプ光が照射される時に生成される光キャリア(正孔、電子、左図)とその分布の時間変化(右図)の概要。(b)自己無撞着計算で再現した(In,Fe)As/InAs 量子井戸の光キャリア分布の時間変化。100 fs ごとのタイムステップで計算した。光照射により生成された電子の局所濃度 N_{pe}(z,t)はすぐに AISb 側に拡散するが、光照射により生成された正孔の局所濃度 N_{ph}(z,t)は計算した時間内ではほとんど変化しないため、光デンバー電場が形成される。(c)量子井戸ポテンシャルが(In,Fe)As 層の中心で深くなり、2次元電子キャリアの濃度 N_{pb}(z,t)の時間変化を計算した結果。図は文献[63]より改変転載。

光正孔 N_µ(*a*)の局所密度は等しいため全体的に光キャ リアによる空間電荷が形成されない。次に、*z*軸に沿 った密度勾配により、これらの光キャリアは基板側に向 かって拡散し始める。ただし、光電子は、InAs 内での 移動度が高く、ポンプレーザによって励起される温度 が高いため、光正孔よりも速く拡散する。その結果、 表面にはより多くの光正孔が、基板側にはより多くの 光電子が再分布することによって表面から基板側に 向かう電界が時間の経過とともに急速に形成される。 これは、いわゆるフォトデンバー電場^[61]であり、InAs^[61,62] などの高移動度半導体でテラヘルツ電磁波を生成す るために利用されている。(In,Fe)As/InAs 量子井戸で は、このフォトデンバー電場が上部の(In,Fe)As 層に 向かって 2D 電子波動関数を押し、波動関数と (In,Fe)As 層の重なりが大きくなるため、これが量子 井戸の磁化の強化につながると考えられる。

上記のシナリオを確認するために、(In,Fe)As/InAs 量子井戸内の光キャリアと2D電子の時間依存分布の 数値計算を行った(詳しい計算方法は論文[63]を参照 されたい)。(In,Fe)As/InAs 量子井戸中には大量の Fe が添加されているため、(In.Fe)As の電子移動度は InAs より低く、通常 100 cm²/Vs 程度である^[46]。した がって、光キャリアの散乱の性質により、光キャリア の移動度 μ が低いと仮定するのが現実的である。我々 は光電子 ($\mu_e = 2 \text{ cm}^2/\text{Vs}$) と光正孔 ($\mu_h = 0.2 \text{ cm}^2/\text{Vs}$) の移動度は低いと仮定して、ポンプレーザパルスに対 する(In,Fe)As/InAs 量子井戸のポテンシャルと2D 波 動関数、および光キャリアの空間分布の 100 fs のタ イムステップごとの応答を計算した。図4(b)に示すよ うに、光電子はすぐに AISb 側に拡散するが、 (In,Fe)As/InAs 界面および InAs/AlSb 界面での反射 により局所濃度 N_a(z, か)強く振動している。一方、光 正孔の局所濃度 N_u(z,t)は計算した時間内ではほとん ど変化しない。その結果、時間の経過とともに、光電 子と光正孔の局所濃度の差が急速に発生するために、 (In,Fe)As/InAs 量子井戸ポテンシャルは(In,Fe)As 層 の中心で深くなり(図4(c)を参照)、2次元電子キャリ アの濃度 N_n(z, t)の再分布を引き起こす。この変化に より(In,Fe)As 領域の局所的な 2D 電子キャリア濃度 が増加し、これがキュリー温度の上昇の原因となった と考えられる。2D 電子波動関数を用いて、 (In,Fe)As/InAs 量子井戸のTcは次式で与えられる^[4951]。

 $T_{C}^{2D} = \frac{S(S+1)}{12} \frac{A_{F}^{2D} J_{sd}^{2}}{k_{B}} \frac{m^{*}}{\pi \hbar^{2}} N_{\text{Fe}} \sum_{E_{j} < E_{F}} \int_{(\text{In,Fe})As} \left| \varphi_{j}(z) \right|^{4} dz$ $\vec{\chi} \quad (1)$

ここで、Sは Fe 原子のスピン角運動量(= 5/2)、 J_{sd} は s-d 交換相互作用定数、 $A_{\rm F}^{2D}$ = 1.2 は 2 次元構造 におけるストーナー補正係数⁶⁴、 $k_{\rm B}$ は Boltzmann 係 数、mは電子の有効質量、 $N_{\rm Fe}$ は Fe 原子密度 $\phi_{\rm J}$ (z)、は 占有量子化準位 $E_{\rm J}$ の波動関数である。式(1)の唯一の

フィッティングパラメーターは Jst であり、これは s-d 交換相互作用エネルギーで決まる。図4(d)に示すよう に、0.054 eV・nm³という妥当な J_{sd} (1 eV の s-d 交 換相互作用エネルギーN₀αに相当)^[4850]を使用すると、 (In,Fe)As/InAs 量子井戸の可視光 MCD の温度依存性 から見積もられた Tcが定量的に再現された。特に電 子が占有する量子化準位の数が400 fsで1から2に 増加したときに Tcが急増する。この結果は、全体的な 電子波動関数の変化により、T_cが17 Kから31 Kへ 増加することを明確に示している。これは、光キャリ アの移動度が低い(0.2~2 Vs/cm²)と仮定しても、 光ポンピングの最初の 500 fs で発生する磁化の増大 が再現されたことを意味する。したがって、ここで 我々が提案した波動関数の操作によって磁化が変化 したというモデルにより、(In,Fe)As/InAs 量子井戸に おいて観測されたサブ ps という超高速での磁化の増 大を説明できたといえる。

4. 結論と展望

磁性材料の磁化をサブ ps の超高速時間スケールで 制御できることは、強磁性半導体量子井戸の顕著な特 長である。(In,Fe)As/InAs から成る量子井戸中の 2D キャリア分布(波動関数)と強磁性半導体(In,Fe)As 層 との重なりを変えることにより超高速磁化制御が可 能であることを、fs レーザ光を用いたポンプ・プロー ブ法により実証した。キャリアの波動関数を制御する 方法は本研究で行った光ポンピングに限定されるも のではなく、トランジスタ構造においてゲート電圧を 印加することによって実行することもできる。この波 動関数工学では、強磁性量子井戸中にキャリア濃度の 変化を起こす必要がないため、材料とデバイスを適切 に設計することでゲート容量 C を可能な限り低減で きる。したがって、CR 定数(R は配線抵抗)によっ て制限されるゲート動作速度はサブ ps にまで速くす ることができる。本研究で実験的に示したように、ス ピンーキャリア相互作用による磁化制御時間は 1 ps より短いため、波動関数制御法を利用した強磁性の電 気的制御は半導体エレクトロニクスと整合性があり、 将来的には超高速でスケーラブルなスピントロニク スデバイスに応用できる可能性がある。

謝辞

本研究の実施に当たってご協力・議論いただいた松 田巌、堀尾眞史、鷲見寿秀、山本航平、武田崇仁、荒 木恒星、岡野諒、久保田雄也、矢橋牧名、大和田成起 の各氏に感謝する。この研究の一部は、科学研究費補 助金(19K21961、20H05650、23K17324)、科学技 術振興機構 CREST (JPMJCR1777) および PRESTO (JPMJPR19LB)、UTEC-東京大学 FSI 研究助成プロ グラム、村田科学財団、およびスピントロニクス学術 研究基盤と連携ネットワーク(Spin-RNJ)の支援を受 けた。XFEL 実験は、高輝度光科学研究センター (JASRI)の承認を得て、SACLAの BL1 で実施され た(提案番号 2018A8064、2018B8022、2019A8001、 2019B8060、2020A8063)。

参考文献

- [1] I. Žutić, J. Fabian, and S. Das Sarma: *Rev. Mod. Phys.* 76 (2004) 323-410.
- [2] K. A. Mistry: 2007 IEEE Intl. Electron Devices Meeting.
 (2007) 247-250.
- [3] A. Kirilyuk, A. V. Kimel, and T. Rasing: *Rev. Mod. Phys.* 82 (2010) 2731-2784.
- [4] E. Beaurepaire, J. -C. Merle, A. Daunois and J. -Y. Bigot: *Phys. Rev. Lett.* **76** (1996) 4250.
- [5] J. Hohlfeld, E. Matthias, R. Knorren and K. H. Bennemann: *Phys. Rev. Lett.* 78 (1997) 4861.
- [6] A. Scholl, L. Baumgarten, R. Jacquemin and W. Eberhardt: *Phys. Rev. Lett.* **79** (1997) 5146.
- [7] B. Koopmans, M. van Kampen, J. T. Kohlhepp, and W. J. M. de Jonge: *Phys. Rev. Lett.* 85 (2000) 844.
- [8] H.-S. Rhie, H. A. Dürr, and W. Eberhardt: *Phys. Rev. Lett.* 90 (2003) 247201.
- [9] M. Lisowski, P. A. Loukakos, A. Melnikov, I. Radu, L. Ungureanu *et al.*: *Phys. Rev. Lett.* 95 (2005) 137402.
- [10] M. Cinchetti, M. Sanchez Albaneda, D. Hoffmann, T. Roth, J. P. Wustenberg *et al.*: *Phys. Rev. Lett.* **97** (2006) 177201.
- [11] C. Stamm, T. Kachel, N. Pontius, R. Mitzner, T. Quast *et al*.: *Nature Mater*. 6 (2007) 740.
- [12] E. Carpene, E. Mancini, C. Dallera, M. Brenna, E. Puppin et al.: Phys. Rev. B 78 (2008) 174422.

- [13] E. A. Mashkovich, K.A. Grishunin, H. Munekata, & A.V. Kimel: *Appl. Phys. Lett.* **117** (2020) 122406.
- [14] G. Ju, A. V. Nurmikko, R. F. Farrow, R. F. Marks, M. J. Carey *et al.*: *Phys. Rev. B* 58 (1998) R11857.
- [15] L. H. F. Andrade, A. Laraoui, M. Vomir, D. Muller, J.-P. Stoquert *et al.*: *Phys. Rev. Lett.* 97 (2006) 127401.
- [16] D. M. Wang, Y. H. Ren, X. Liu, J. K. Furdyna, M. Grimsditch *et al.*: *Phys. Rev. B* **75** (2007) 233308.
- [17] Y. Hashimoto, S. Kobayashi and H. Munekata: *Phys. Rev. Lett.* **100** (2008) 067202.
- [18] E. Rozkotová, P. Němec, P. Horodyská, D. Sprinzl, F. Trojánek et al.: Appl. Phys. Lett. 92 (2008) 122507.
- [19] J. Qi, Y. Xu, A. Steigerwald, X. Liu, J. K. Furdyna *et al.*: *Phys. Rev. B* **79** (2009) 085304.
- [20] Y. Yang, R. B. Wilson, J. Gorchon, C. –H. Lambert, S. Salahuddin *et al.*: *Sci. Adv.* **3** (2017) e1603117.
- [21] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto *et al.*: *Phys. Rev. Lett.* **99** (2007) 047601.
- [22] S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř et al.: Nat. Mater. 13 (2014) 286-292.
- [23] C-H. Lambert, S. Mangin , B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, M. Hehn *et al.*: *Science* 345 (2014) 1337-1340.
- [24] C. Banerjee, N. Teichert, K. E. Siewierska, Z. Gercsi, G. Y. P. Atcheson *et al.*: *Nat. Commun.* 11 (2020) 1-6.
- [25] I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius *et al.*: *Nature* 472 (2011) 205-208.
- [26] T. A. Ostler, J. Barker, R.F.L. Evans, R.W. Chantrell, U. Atxitia *et al.*: *Nat. Commun.* 3 (2012) 666.
- [27] K. Yamamoto, S. El Moussaoui, Y. Hirata, S. Yamamoto, Y. Kubota *et al.*: *Appl. Phys. Lett.* **116** (2020) 172406.
- [28] J. Wang, I. Cotoros, K. M. Dani, X. Liu, J. K. Furdyna, and D. S. Chemla: *Phys. Rev. Lett.* **98** (2007) 217401.
- [29] F. Liu, T. Makino, T. Yamasaki, K. Ueno, A. Tsukazaki *et al.*: *Phys. Rev. Lett.* **108** (2012) 257401.
- [30] D. Rudolf, C. La-O-Vorakiat, M. Battiato, R. Adam, J. M. Shaw *et al.*: *Nature Commun.* 3 (2012) 1037.
- [31] P. Elliott, T. Müller, J. K. Dewhurst, S. Sharma and E. K.
 U. Gross: *Sci. Rep.* 6 (2016) 38911.
- [32] F. Siegrist, J. A. Gessner, M. Ossiander, C. Denker, Y.-P. Chang *et al.*: *Nature* 571 (2019) 240-244.
- [33] P. Tengdin, C. Gentry, A. Blonsky, D. Zusin, M. Gerrity *et al.*: *Sci. Adv.* 6 (2020) eaaz1100.
- [34] M. Hofherr, S. Häuser, J. K. Dewhurst, P. Tengdin, S. Sakshath *et al.*: *Sci. Adv.* 6 (2020) eaay8717.

最近の研究から

- [35] D. Steil, J. Walowski, F. Gerhard, T. Kiessling, D. Ebke et al.: Phys. Rev. Research 2 (2020) 023199.
- [36] J. U. Thiele, M. Buess and C. H. Back: *Appl. Phys. Lett.* 85 (2004) 2857-2859.
- [37] G. Ju, J. Hohlfeld, B. Bergman, R. J. M. van de Veerdonk,O. N. Mryasov *et al.*: *Phys. Rev. Lett.* **93** (2004) 197403.
- [38] G. Li, R. Medapalli, J. H. Mentink, R. V. Mikhaylovskiy, T. G. H. Blank *et al.:Nature Commun.* 13 (2022) 2998.
- [39] C. Vicario, C. Ruchert, F. Ardana-Lamas, P. M. Derlet, B. Tudu *et al.*: *Nat. Photonics* 7 (2013) 720.
- [40] S. Bonetti, M. C. Hoffmann, M.-J. Sher, Z. Chen, S.-H. Yang et al.: Phys. Rev. Lett. 117 (2016) 087205.
- [41] T. Kampfrath, K. Tanaka, and K. A. Nelson: *Nat. Photonics* **7** (2013) 680.
- [42] T. Ishii, H. Yamakawa, T. Kanaki, T. Miyamoto, N. Kida et al.: Appl. Phys. Lett. 114 (2019) 062402.
- [43] H. Ohno: Science 281 (1998) 951-956.
- [44] M. Tanaka, S. Ohya, and P. N. Hai: Appl. Phys. Rev. 1 (2014) 011102.
- [45] T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand: *Science* 287 (2000) 1019-1022.
- [46] P. N. Hai, L. D. Anh, S. Mohan, T. Tamegai, M. Kodzuka et al.: Appl. Phys. Lett. 101 (2012) 182403.
- [47] P. N. Hai, L. D. Anh and M. Tanaka: *Appl. Phys. Lett.* 101 (2012) 252410.
- [48] L. D. Anh, P. N. Hai and M. Tanaka: *Nature Commun.* 7 (2016) 13810.
- [49] L. D. Anh, P. N. Hai and M. Tanaka: *Appl. Phys. Lett.* 104 (2014) 042404.
- [50] L. D. Anh, P. N. Hai, Y. Kasahara, Y. Iwasa and M. Tanaka: *Phys. Rev. B* 92 (2015) 161201(R).
- [51] B. Lee, T. Jungwirth, and A. H. MacDonald: *Phys. Rev. B* 61 (2000) 15606.
- [52] T. Ishikawa et al.: Nat. Photonics 6 (2012) 540.
- [53] S. Owada, K. Togawa, T. Inagaki, T. Hara, T. Tanaka *et al.*: J. Synchrotron Radiat. **25** (2018) 282.
- [54] Sh. Yamamoto, M. Taguchi, M. Fujisawa, R. Hobara, S. Yamamoto *et al.*: *Phys. Rev. B* **89** (2014) 064423.
- [55] M. Kobayashi, L. D. Anh, J. Minár, W. Khan, S. Borek *et al.*: *Phys. Rev. B* 103 (2021) 115111.
- [56] A. Melnikov, I. Razdolski, T. O. Wehling, E. Th. Papaioannou, V. Roddatis *et al.*: *Phys. Rev. Lett.* **107** (2011) 076601.
- [57] N. Bergeard, M. Hehn, S. Mangin, G. Lengaigne, F. Montaigne *et al.*: *Phys. Rev. Lett.* **117** (2016) 147203.

- [58] M. Hofherr, P. Maldonado, O. Schmitt, M. Berritta, U. Bierbrauer *et al.*: *Phys. Rev. B* 96 (2017) 100403.
- [59] A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius *et al.*: *Nat. Mater*: **12** (2013) 332.
- [60] T. Jiang, X. Zhao, Z. Chen, Y. You, T. Lai, and J. Zhao: *Materials Today Physics* 26 (2022) 100723.
- [61] H. Dember: Phys. Z 32 (1931) 554.
- [62] P. Gu and M. Tani: Terahertz Optoelectronics, edited by K. Sakai (Springer, Berlin) (2005) Chap. 4 63.
- [63] L. D. Anh, M. Kobayashi: T. Takeda, K. Araki, R. Okano et al.: Adv. Mater. 35 (2023) 2301347.
- [64] T. Dietl, A. Haury and Y. Merle d'Aubigne: *Phys. Rev. B* 55 (1997) R3347.

<u> レ デゥック アイン Le Duc ANH</u>

東京大学 工学系研究科 電気系工学専攻 スピントロニクス学術連携研究教育センター 〒113-8658 東京都文京区本郷 7-3-1 TEL:03-5841-6654 e-mail:anh@cryst.t.u-tokyo.ac.jp

小林 正起 KOBAYASHI Masaki

東京大学 工学系研究科 電気系工学専攻 スピントロニクス学術連携研究教育センター 〒113-8658 東京都文京区本郷7-3-1 TEL:03-5841-6692 e-mail:masaki.kobayashi@ee.t.u-tokyo.ac.jp

田中 雅明 TANAKA Masaaki

東京大学 工学系研究科 電気系工学専攻 スピントロニクス学術連携研究教育センター 〒113-8658 東京都文京区本郷 7-3-1 TEL:03-5841-6728 e-mail:masaaki@ee.t.u-tokyo.ac.jp