2014年度指定パートナーユーザー活動報告

極細 X 線ビームを使った超高圧高温下の物性測定

東京工業大学 地球生命研究所

廣瀬 敬

(1)

指定時 PU 課題番号/ビームライン	2014A0080/BL10XU						
PU氏名 (所属)	廣瀬 敬 (東京工業大学)						
研究テーマ	極細X線ビームを使った超高圧高温下の物性測定						
高度化	安定高温高圧実験ステーション整備と先導的活用						
利用研究支援	当該装置を用いた利用実験の支援						
利用期	14A	14B	15A	15B	16A	16B	合計
PU 課題実施シフト数	36	57	51	42	41.625	38.375	266
支援課題数	4	10	7	14	17	16	68

(2) PU 活動概要

1) 高度化への協力

【高度化その1】

・X線ビーム径を1ミクロン以下に集光

この高度化には、モノクロメータを液体窒素型の ものへ交換することと、X線集光光学系の開発が必 要であった。廣瀬を代表者とする科研費・特別推進 研究「地球中心核の物質と進化の解明」を予算源に、 2013 年度中にはモノクロメータの交換と集光光学 系の光学部品の導入が完了し、本PU指定期間中は、 集光光学系の最適化と実際のユーザー利用への対 応が課題であった。

結果として、従来半値幅で約6ミクロン以上もあ った BL10XU のX線ビーム径は1ミクロン程度へ 集光可能になり、そもそも試料サイズが極小の超高 圧実験、加えて均質な温度領域が狭い比較的高圧下 のレーザー加熱実験にとって大きなメリットにな った(図1)。他のグループによる超高圧実験にも 大きく役立っている。

【高度化その2】

・フラットパネルディテクタの導入 これまで BL10XU には X 線 CCD カメラが設置 されていた。同じく回折計に装備されているイメー ジングプレートによるデータ取得に 5 分以上要す るのに対し、短時間内に回折データの取得ができる 装置として、ユーザーに広く用いられてきた。設置 から 10 年程度経過し、不具合も目立ってきたため、 今回この CCD カメラを更新することとした。

CCD カメラの後継機として、当初は CMOS カメ ラを計画していたが、その後、ドイツ電子シンクロ トロン (DESY) における実績も考慮し、2014 年度 にフラットパネルディテクタを導入した。これによ り、高速 (例えば 100 msec ごと) で自動連続 X 線 回折データ取得が可能になり、変化が短時間内に起 こる高温実験に極めて有効な装置になっている。

【高度化その3】

・レーザー加熱光学系の改良

レーザー加熱 DAC 実験においては、加熱された 試料から輻射スペクトルを取得し、温度を決定して いる。この輻射スペクトルはレンズを通して分光器 へ導かれるため、レンズの色収差の問題(波長ごと に見ている場所が異なるので、試料中に温度差があ ると正確な温度が測定されない)が以前から繰り返 し議論されてきた。そこで今回、温度計算に使用す る波長範囲全体にわたって色収差が補正されるレ ンズを設計し、2014年度に導入した。これに伴い、 レーザー加熱光学系と試料観察・温度測定光学系も 変更した。

これにより、レーザー加熱 DAC 実験において、 より信頼度の高い温度測定値が得られるようにな った。

2) 高度化に関連する利用実験

上記高度化その1によって、X線ビームが極細化さ れたことにより、XRD 測定の空間分解能が上がり、 また X線観察領域内の温度差もずっと小さくなった (図1)。高度化その2によって、特に融解開始時の 変化がとらえやすくなった。また高度化その3は温度 決定精度を上げることに貢献した。

図1 DAC 中で加熱された試料表面の温度分布。

以下に、2014A から 2016B 期に得られた主な成果 をまとめる。

1. 新たな Fe-N 合金の発見

窒素は宇宙存在度が高い元素な上、親鉄元素でもあ り、コアに含まれる軽元素の1つであっても不思議は ない。しかしながら Fe-N 合金に関する過去の高圧実 験は 30 万気圧以下に限られていた。今回 Fe₄N と Fe₇N₃合金につき、150 万気圧まで高圧高温 XRD 実 験を行い、Fe₇N₃組成の新しい相(β相)を発見した

[Minobe *et al.*, 2015 *GRL*]。これは 40 万気圧以上で 最も鉄に近い Fe-N 中間化合物であり、地球惑星科学 的に重要である。観測される内核の横波速度が、純鉄 のそれよりもはるかに遅いことが以前からよく知ら れている。ごく最近、この遅い横波速度は Fe_rC_3 相で 説明可能という議論がある。この Fe_rC_3 相と今回発見 した Fe_rN_3 組成の β 相は、同じ結晶構造、似た密度、 ほぼ同じ圧縮挙動であり、これが内核で Fe_rC_3 相と固 溶体を作っている可能性がある。

2. 内核--外核境界における軽元素の分別

隕石中に含まれる金属の多くが鉄--硫黄合金である ことから、硫黄は最も有力なコアの軽元素とされてき た。ゆえに、Fe-S 系の状態図は極めて重要である。今 回 XRD 測定をしながら 278 GPa までの相平衡実験、 ならびに 254 GPa までの融解実験を行ったところ、 圧力の増加と共に Fe-Fe_sS 系の共融点組成が鉄に富ん でいくこと、254 GPa においては共存する固体と液 体中の硫黄量の差が 1.5 wt.%しかないことがわかっ た。このことは、硫黄が主要なコアの軽元素であった 場合、固体鉄が結晶化しないこと、内核・外核の密度 ジャンプも説明できないことがわかった。つまり、コ アの主要な軽元素は硫黄ではないことが明らかにな った [Mori et al., 2017 EPSL]。

3. 鉄および鉄合金の融解曲線の決定とコア温度の推定

鉄の融解曲線、特に内核-外核境界における鉄の融 点は、コアの温度を制約する上で極めて重要とされる。 これまで数多くの実験が行われてきたが、コア圧力に おいて融解温度には 1000 ケルビン程度の不一致が見 られる。そこで、本 PU 課題では、温度勾配の大きな レーザー加熱実験に代わり、内部抵抗加熱式 DAC を 用いた実験を 290 GPa まで行った。その結果、広く 引用されている Anzellini *et al.* [2013]の結果より、内核 -外核境界で 500 ケルビン程度異なる結果が得られた。 これはその分、コアの温度も低く見積もられることを 意味する [Sinmyo *et al.*, submitted]。

4. 状態方程式の決定

4-1 Fe₇N₃の新相(高圧相)の圧縮・熱膨張挙動

上に記した Fe₇N₃の新相につき、136 万気圧・2500 Kまで体積測定を行い、圧縮・熱膨張挙動を明らかに した。この新相の結晶構造は Fe₇C₃のそれと同じであ り、また今回の実験で体積・圧縮性もよく似ているこ とがわかった [Minobe *et al.*,2015 *GRL*]。また、内核 の密度は、 Fe_7C_3 と Fe_7N_3 の固溶体で説明できること が明らかになった [Kusakabe *et al.*, submitted]。

4-2 Fe-Si-H 合金の圧縮挙動

われわれは最近、水素がコアの重要な軽元素である と主張している [Nomura *et al.*, 2014 *Science*]。地球化 学・宇宙化学的な考察から、コアには 7 wt.%程度の シリコンがあるとされる。そこで今回、(Fe-6.5 wt.%Si)Hx (x = 0.7, 0.9)の圧縮曲線を 136 万気圧 (コア圧力)まで決定し(図 2)、水素を含まない Fe-6.5 wt.%Si 合金のそれと比較して [Tateno *et al.*, 2015 *EPSL*]、圧縮率に及ぼす水素の影響を明らかにした。 その結果、従来の結果と異なり水素は圧縮特性をほと んど変えないこと、低温(20 K)で圧縮を開始すると bcc 相から hcp 相に相転移すること(dhcp 相ではな く)がわかった(図 2) [Tagawa *et al.*, 2016 *GRL*]。

図2 鉄-シリコン-水素合金の圧縮挙動。

4-3 氷の体積に及ぼす水素/重水素の同位体効果

通常、原子をより質量の重い同位体原子に置き換え ると、体積が減少する。ところが、氷に対してはこれ が必ずしも当てはまらない。極めて単純な物質である 氷に関して、異なる体積同位体効果が発生する理由は、 これまで明らかになっていなかった。そこで今回、 H₂O・D₂O両方の氷 VII 相につき、圧縮曲線を求めた ところ、16 万気圧において、体積同位体効果が通常 のものから異常なものへの変化が観測された [Umemoto et al., 2015 PRL]。これは VIII 相(水素が 秩序良く分布した、VII 相に類似する相) に対する理論 計算による、14 万気圧以上で異常が現れるという予測 と極めて良い一致を示す。理論計算によれば、分子内 の水素酸素結合の伸縮に対応するフォノンモードの圧 力依存性がこの変化に決定的な役割を果たしている。

5. 液体鉄の状態方程式の決定

コアの密度は重要な観測値の一つであり、高圧下で 液体鉄合金の密度を実験的に決定することはコアの 組成を明らかにする上で極めて重要である。本 PU 課 題では、液体鉄の密度を XRD 測定における液体のハ ローパターン (diffuse scattering) から決定した [Kuwayama *et al.*, in preparation] 。また現在、これと 同じ液体試料を、BL43XU における非弾性散乱測定に よって縦波速度を決定しつつあり、これらによって密 度と速度を同時にコアの観測値と比較可能になる。

6. 高圧下における熱伝導率測定

われわれは最近、室温超高圧における固体の Fe、 Fe-Si 合金 [Gomi et al., 2013 PEPI]、Fe-Ni 合金 [Gomi and Hirose, 2015 PEPI] の電気抵抗率測定に基づき、コ アの熱伝導率が従来の推定の 3 倍近く高いことを示 した。これは、古地磁気観測データが示す、少なくと も 35 億年前からコアの対流が起きていたことを考え ると、コアの冷却速度が速い、つまりコアは高温だっ た、固体コアができたのは 10 億年より最近、という ことを意味する。

そこで本 PU 課題では、高圧高温下での電気抵抗率 測定を、157 万気圧・4500 K の超高圧高温まで、XRD 測定と同時に行った(図 3)。その結果は、室温での 測定に基づく Gomi *et al.*の予測をサポートし、コアの 高い熱伝導率を示すことができた[Ohta *et al.*, 2016 *Nature*]。

3) 高度化に関連する利用者支援

われわれが行った利用者支援の内容は、レーザー加 熱システム・フラットパネルディテクタを利用した実 験の支援、およびレーザー加熱システムの事前整備・ 調整である。本 PU 課題中の3年間に、利用者支援は 合計 68 課題であった。

今回の高度化計画で実現した、X線マイクロビーム は、加熱試料中の温度勾配が大きい、すべてのレーザ ー加熱実験にとって有用である。また、試料サイズが 極端に小さなマルチメガバール(200万気圧)以上の 超高圧実験にも大きな役に立っている[Akahama et al., 2014 JAP]。電気抵抗率を測る(超電導を見る)実験 においても、電極を避けて試料の XRD データを取得 できるという点で大きなメリットになっている。

また新たにフラットパネルディテクタを導入した ことにより、高速で自動連続X線回折データの取得が 可能になった。従来のX線 CCD カメラではデータ取 得に数秒以上かかっていたことに比べると格段に速 くなった。この結果、反応の進行具合や融解の開始(も しくはその兆候)を検知することができるようになっ た。これらX線マイクロビームや自動連続 XRD シス テムにより、BL10XU における XRD データの質がさ らに向上したと言える。

今回はレーザー加熱光学系のアップデートも行った。本研究グループは、同システムの設計・導入・高度化・維持・管理・アップデート・ビームタイム前調整を継続して行っている。BL10XUの全ビームタイムのうち、4割以上がレーザー加熱DAC実験である。われわれはこれら全般を直接的・間接的に支援している。

(3) 成果リスト(査読付き論文)

SPring-8 利用研究成果登録データベースに登録済み で、PU課題番号が関連づけられた査読付き論文のみを 掲載します。(その他、PUとして支援した一般課題の 発表論文やポスター発表、受賞歴など多数の成果があり ますが、掲載スペースの都合上割愛しています。)

- [1] SPring-8 publication ID = 28780
 S. Imada: "Sound Velocity and Density of Liquid Fe-Ni-S Alloy at High Pressure" Doctor Thesis (Tokyo Institute of Technology) (2015).
- [2] SPring-8 publication ID = 29198 S. Minobe *et al.*: "Stability and compressibility of a new iron-nitride β -Fe₇N₃ to core pressures" *Geophysical Research Letters* **42** (2015) 5206-5211.
- [3] SPring-8 publication ID = 29922K. Umemoto *et al*.: "Nature of the volume isotope effect

in ice" Physical Review Letters 115 (2015) 173005.

[4] SPring-8 publication ID = 30665

C. Kato *et al.*: "Melting in the FeO-SiO₂ System to Deep Lower-Mantle Pressures: Implications for Subducted Banded Iron Formations" *Earth and Planetary Science Letters* **440** (2016) 56-61.

- [5] SPring-8 publication ID = 31199
 S. Tagawa *et al.*: "Compression of Fe-Si-H Alloys to Core Pressures" *Geophysical Research Letters* 43 (2016) 3686-3692.
- [6] SPring-8 publication ID = 31374

K. Ohta *et al.*: "Experimental Determination of the Electrical Resistivity of Iron at Earth's Core Condition" *Nature* **534** (2016) 95-98.

[7] SPring-8 publication ID = 33203

K. Ohta *et al.*: "Thermal Conductivity of Ferropericlase in the Earth's Lower Mantle" *Earth and Planetary Science Letters* **465** (2017) 29-37.

[8] SPring-8 publication ID = 34002

Y. Okuda *et al.*: "The Effect of Iron and Aluminum Incorporation on Lattice Thermal Conductivity of Bridgmanite at the Earth's Lower Mantle" *Earth and Planetary Science Letters* **474** (2017) 25-31.

[9] SPring-8 publication ID = 34471

S. Suehiro *et al.*: "The Influence of Sulfur on the Electrical Resistivity of Hcp Iron: Implications for the Core Conductivity of Mars and Earth" *Geophysical Research Letters* **44** (2017) 8254-8259.

[10] SPring-8 publication ID = 34799

Y. Kidokoro *et al.*: "Phase Transition in SiC from Zinc-Blende to Rock-Salt Structure and Implications for Carbon-Rich Extrasolar Planets" *American Mineralogist* **102** (2017) 2230-2234.

[11] SPring-8 publication ID = 34800

Y. Mori *et al.*: "Melting Experiments on Fe-Fe₃S System to 254 GPa" *Earth and Planetary Science Letters* **464** (2017) 135-141.

[12] SPring-8 publication ID = 34801

S. Labrosse *et al.*: "Fractional Melting and Freezing in the Deep Mantle and Implications for the Formation of a Basal Magma Ocean" in *The Early Earth: Accretion and Differentiation*, AGU monograph **212** (2015) 123-142.

[13] SPring-8 publication ID = 34805

T. Ishii *et al*.: "Synthesis and Crystal Structure of LiNbO₃type Mg₃Al₂Si₃O₁₂: A Possible Indicator of Shock Conditions of Meteorites" *American Mineralogist* **102** (2017) 1947-1952.

[14] SPring-8 publication ID = 35339

T. Wakamatsu *et al.*: "Measurements of Sound Velocity in Iron-Nickel Alloys by Femtosecond Laser Pulses in a Diamond Anvil Cell" submitted to *Physics and Chemistry of Minerals.* <u>廣瀬 敬 HIROSE Kei</u>

東京工業大学 地球生命研究所 〒152-8550 東京都目黒区大岡山 2-12-1 TEL:03-5734-3528 e-mail:kei@elsi.jp