平成21年度指定パワーユーザー活動報告(5)

X線天文学新展開のための

次世代 X 線望遠鏡システム評価技術の開発

名古屋大学 現象解析研究センター

松本 浩典

名古屋大学大学院 理学研究科

國枝 秀世

(1)

指定時 PU 課題番号/ビームライン	2009A0088/BL20B2										
PU 氏名(所属)	國枝 秀世(名古屋大学)										
研究テーマ	X線天文学新展開のための次世代X線望遠鏡システム評価技術の開発										
装置整備	X線天体観測装置の評価技術の高度化										
利用研究支援	当該装置を用いた利用実験の支援										
利用期	09A	09B	10A	10B	11A	11B	12A	12B	13A	13B	合計
PU 課題実施シフト数	36	54	48	54	56	33	48	53	45	39	466
支援課題数	0	0	0	1	0	2	0	1	1	1	6

(2) PU 活動概要

2.1 ASTRO-H 硬 X 線望遠鏡(HXT)

X線は周波数が金属のプラズマ振動数よりも大き く、直入射ではほとんど反射されない。従って宇宙 観測用 X線望遠鏡は、反射鏡をバウムクーヘン状 に並べた Wolter-I 型の斜入射光学系の形をとる(図 1)。これまでの X線望遠鏡は、全反射の原理を使っ て X線を反射しており、従って、E > 10 keV の X 線に対しては臨界角が非常に小さくなり、反射効率 が極端に低かった。そのため、E > 10 keV の X線 を用いた宇宙の撮像観測は、未開拓の領域であった。

日本が2015年度に打ち上げ予定のASTRO-H 衛 星には、我々が開発・製作した硬 X 線望遠鏡(Hard X-ray Telescope; HXT) が2台 搭載 され、1台目 をHXT1、2台目をHXT2と呼ぶ(図2)。HXT1と HXT2は全く同じデザインであり、口径450 mm、 焦点距離12 m、反射鏡の総ネスト数213である。 これまでの X 線望遠鏡との最も大きな違いは、反 射鏡内面に Pt と C の多層膜を採用している点であ る。これにより、ブラッグ反射で、E > 10 keV の 高エネルギー X 線でも反射出来る(図3)。多層膜 の層厚が一定の場合、入射角に対して決まったエネ

図1 Wolter-I 型斜入射光学系

図2 ASTRO-H 衛星搭載硬 X 線望遠鏡 (Hard X-ray Telescope; HXT)。 写真は HXT1。

図3 多層膜によるブラッグ反射の概念図。 λ_1 、 λ_2 、 λ_3 は波長の異なるX線を表す。

ルギーのX線しか反射出来ない。そこで、深さ方 向に厚さを徐々に変化させ、色々なエネルギーのX 線を反射出来るようにする。これをスーパーミラー と呼ぶ。スーパーミラーの採用により、HXT は、E = 10 - 80 keVのX線を反射集光出来るようになっ た。HXT の焦点面には、Si と CdTe を利用した半 導体撮像検出器 (Hard X-ray Imager; HXI) が設 置される。HXT + HXIのシステムで、硬X線によ る宇宙の撮像分光観測がスタートする。例えば、ほ とんどすべての銀河の中心には巨大ブラックホール が存在すると考えられているが、もし厚い星間物質 で覆われていると、通常の電磁波は吸収されてしま い、観測することが出来ない。しかし透過力の強い 硬 X 線ならば、厚い物質を貫通出来る。ASTRO-H HXT では、このような厚い物質で覆われた未発見 の巨大ブラックホールの探査が進むと期待される。

HXT を組み上げる際には光学調整を行う。また

HXT 組み上げ後は、有効面積、 角度分解能といった HXT の基本 的な性能を、ASTRO-H 打ち上げ 前に地上で測定しなければなら ない。これらには、平行度の高 い、E = 10 - 80 keV の X 線ペ ンシルビームを使う。現実的な時 間内で測定を行い、さらにシス テマティックな誤差を低く抑える には、強く安定したビームが必要 である。これらの条件を満たす X 線ビームラインは、世界中でも SPring-8 BL20B2しかない。そこ で我々は、ASTRO-H HXT の開 発のみならず、それに続く次世代 のX線望遠鏡開発も念頭に置いたX線望遠鏡性能 評価システムをBL20B2に構築するべくPU課題申 請を行い、採択され、2009年度より活動を行って きた。本記事では、その活動内容の一部を報告させ ていただく。

2.2 研究内容

2.2.1 焦点距離12 m の光学系の特性測定システム の確立

望遠鏡特性を測定するために、BL20B2ハッチ内 で、HXTと検出器をそれぞれ精密移動台に搭載し、 HXTの全面を単色化したペンシルビームで走査す る(図4)。具体的には、X-Y軸移動、方位角、仰 角、光軸回転の5自由度を持つステージを設置し、 これに口径45 cm、重量70 kgの望遠鏡を搭載し、 固定X線ビームに対して操作する。焦点面検出器 としてはイメージインテンシファイアやX線シン チレーターを使用し、望遠鏡ステージと同期して3 軸に移動するステージに搭載した。それぞれの制御 精度は約2 µm、約1秒角である。2009年 A/B 期 にはまず HXT 試作ハウジングに反射鏡を組み込み、 多層膜反射鏡の測定と望遠鏡としての特性測定法を 確立した。

2.2.2 望遠鏡評価方式の確立

飛翔体に搭載した望遠鏡は、飛翔前に単色で平行 度の良いX線を照射し、その集光効率、結像性能 を正確に測定しておく必要がある。これにより観測 された焦点面検出器で得られる情報から、天体の本 来の強度分布、スペクトルを求めることが出来る。

SPring-8 BL20B2は高い単色性で平行度の高く強い ビームが得られ、特性測定に最適である。

我々は、これまでの衛星搭載X線望遠鏡、気球 搭載硬X線望遠鏡の特性試験の経験から、以下の 項目の測定が必要であると考え、SPring-8を用いた 測定計画を立案した。

- ・有効面積のエネルギー依存性と入射角依存性 (視野)
- ・結像性能 (Half Power Diameter; HPD)
- ・迷光

2.2.3 望遠鏡開発アドバイザー

ASTRO-H HXT では望遠鏡開発を進めている諸 外国の専門家を招聘し、望遠鏡開発、特性測定計画 についてのアドバイスを受けることにした。2010 年2月20~23日には7名の研究者を日本に招聘し、 望遠鏡を開発している名古屋大学の実験室を見せる とともに、SPring-8に招き、測定システムを見せ、 特性測定計画を説明した。その目的は、ASTRO-H HXT 計画実施へのアドバイスを受けるとともに、 SPring-8に設置した宇宙観測X線望遠鏡性能評価 システムを紹介することであった。これまでの望遠 鏡較正試験は、軟X線に限られたり(宇宙科学研 究所、ESA 試験装置)、拡散光しか出ない(MPE: Panther) などの制限があった。SPring-8に我々が 構築した計測システムの優れた点を知ってもらい、 将来的に硬X線望遠鏡較正の世界標準システムと して認知されることを目指した。この結果、このと きのアドバイザーの1人である Giovanni Pareschi 博士(イタリア、ブレラ天文台)が開発中の望遠鏡 の特性測定の実験を、2010年に SPring-8 で実施す ることとなった。

2.2.4 光学調整法の確立と改良

HXT は、0.2 mm 厚のアルミ基板の上下端を、 アラインメントバーに刻んだ溝にはめ込むことで反 射鏡の入射角を規定し、焦点へ集光する。光学調整 は結像が最も鋭くなるように、アラインメントバー の位置を調整することで行う。X線望遠鏡は反射鏡 2段でX線を反射して結像するため、2段の反射鏡 の傾きを調整する必要がある。組み上げ手順として は、まず下段に反射鏡を詰めて焦点調整を行った後、 上段の反射鏡を詰めて2段反射後の焦点を最適化す る調整を行う。

これらの調整において、当初は一旦焦点面像を測

定し、そのずれを直すべく、望遠鏡をステージから 外して、マイクロメータで測定しながらアラインメ ントバーの位置決めを行った。収束するまでこの調 整を繰り返すため、長い時間が必要であった。これ を改善するため、望遠鏡鏡筒にピエゾアクチュエー タを取り付け、リアルタイムで撮像と調整を実施す ることにし、大幅に効率化した。

2.2.5 搭載用望遠鏡の特性測定結果

BL20B2では、非常に平行度の高いX線ビームを 得ることが出来る。また、HXTの焦点距離に対応し て、検出器(イメージインテンシファイア、CCD)を 望遠鏡から12 m離しておくことが出来る。図5のよう に座標軸を設定し、X線望遠鏡を種々の位置に傾け てX線を照射し、性能評価を行う。しかし、直径約 40 cmのHXT全体に同時にX線を照射することは 出来ない。そこで、例えば10 mm × 10 mmのX線 ビームを作り、図6のようにモザイク状にビームを当て、 HXTの性能評価を行っている。

図6 HXT へのビーム照射パターンの一例。小 さな四角が10 mm × 10 mm の X 線ビー ムに対応。1 セグメント全体をカバー。

主な測定項目は、1. 結像性能、2. 有効面積、3. 視野 (vignetting function)、4. 迷光、である。各 種目の測定エネルギーは、表1の通りである。

上記の他に、HXT2に対しては、E = 20 - 70 keVの範囲で ΔE = 1 keV 刻みで有効面積のエネル ギー依存性を調査した。これは、ブラッグ反射によ る微細構造の有無を調査するためである。

表1 HXT 性能評価の測定 X 線エネルギー

	測定 X 線エネルギー(keV)									
	20	30	40	50	60	70				
結像性能	2	1, 2	1, 2	1, 2	1, 2	1,2				
有効面積	2	1, 2	1, 2	1, 2	1, 2	1, 2				
視 野		1		1, 2						
迷光		1, 2			2					

「1」は HXT1、「2」は HXT2 を表す。

光軸決定と視野

HXT の光軸を、有効面積が最大になる X 線入射 方向、と定義する。光軸を決めるためには、有効面 積の X 線入射角依存性(= vignetting)を調べる必

要がある。HXT の有効面積は、

(HXT 有効面積) = (HXT 開口面積)×(反射像 X 線カ ウント数)/(直接光 X 線カウント数)

の式で求める。まず、HXTの各セグメントに対し て vignetting を求める。HXT2の第二セグメントの vignetting を図7に示す。

次に、各セグメントの vignetting を合成して、望 遠鏡全体の vignetting を計算し、望遠鏡の光軸方 向を決める。HXT1では30 keV と50 keV の2つ のエネルギーで vignetting を測定しているが、50 keV の vignetting の方が幅が狭い。従って光軸は HXT1、HXT2ともに50 keV の vignetting で決定 した。図8に HXT2全体の vignetting を示す。望遠 鏡視野を vignetting の半値幅と定義すると、HXT2 の場合、50 keV の X 線に対して5.6分角となった。 数値シミュレーションでは5.3分角と予想されてお り、ほぼ同等の数値が得られた。

有効面積

光軸が決定したので、光軸に対する有効面積を求 めた(図9)。HXT1、HXT2の間に大きな差は見ら れない。また、HXT1、HXT2ともに、要求値である

> 30 keV で150 cm²、50 keV で55 cm²を上回っていることを 確認した。測定値を理論モデル と比較すると、界面粗さ \sim 0.41 nm、throughput \sim 0.75と 概 ね一致することがわかった。こ こで throughput とは、理論モ デルと実測値の比である。HXT に特有のものではなく、あす か衛星以降の多重薄板型 X 線

図7 HXT2の第二セグメントの vignetting

図8 50 keVのX線に対するHXT2全体の vignetting

図10 HXT2の有効面積のエネルギー依存性の詳 細測定。測定値を赤、理論モデル値を黒、 throughput を下段に示す。再現性確認の ための再測定は水色で示している。

望遠鏡で常に観測されている。その起源は不明だが、 反射鏡フォイルの微妙な形状ゆがみによるケラレな どに起因すると推測している。

HXT2に関しては、 $\Delta E = 1 \text{ keV}$ 刻みでの、エ ネルギー依存性も測定した(図10)。37 keV、44 keV、66 keV では2回測定を行っており、これら から再現性は、1~5%程度と見積もられた。ブラッ グ反射に起因する複雑な構造が懸念されていたが、 数%以下のレベルであることが確認された。また、 throughput が高エネルギーにいくにつれてなだら かに落ちていることがわかる。throughput の起源 解明への手掛かりの一つとなるだろう。

結像性能

焦点面では、図11(左)のような像が得られる。 結像位置を中心とする半径の円を描き、その円に含 まれる光子数を計測する。全光量の半分を含む円の 直径を Half Power Diameter (HPD) と呼び、こ れを結像性能の指標とする。各エネルギーの X線 に対し、図11(右)のような HPD が得られた。 HPD の結像性能に対して HPD = 1.7 分角が要求さ れているので、概ね要求通りの性能が出ていること がわかる。また、エネルギーが高くなるほど結像性 能が良くなっていることがわかる。これは、臨界角 度のX線エネルギー依存性に起因していると考え られる。低いエネルギーのX線は臨界角度が大き いので、望遠鏡全面で反射されるのに対し、高いエ ネルギーのX線は内側の反射鏡しか有効に反射し ない。外側のフォイルは円周方向のサイズが大きく、 それだけ形状もゆがみやすい。それゆえ、低エネル ギーX線に対する角度分解能は、高エネルギーX 線に対して若干悪くなる傾向にあると考えられる。

<u>迷光</u>

正規の2回反射以外の経路をたどって検出器に届 くX線を迷光と呼ぶ。これを防ぐため、HXTは上 段にプリコリメータ (Pre-Collimator; PC)を搭載 している。

PCの効果を確認するため、望遠鏡を12分角、20

図11 (左) HXT2の30 keV X 線に対する焦点面像。(右) 各エネルギーの X 線に対する HPD。典型的な不定性は 0.1 分角。1.7 分角の点線は目標値を示す。

図12 E = 30 keV の X 線に対する HXT1 の迷光測定。(左)12分角、 PC なし、(中) 12分角、PC あり、(右) 20分角、PC あり。 白い四角は検出器(HXI) サイズ。

分角傾けてX線を照射し、検出器位置に届いてし まうX線を測定した。HXT1に30 keVのX線を照 射した場合の例を図12に示す。このように、PCを 搭載すると確かに迷光が減っていることが確認出来 た。12分角の場合、PCを搭載すると迷光は40% 減る。20分角の場合、ほぼすべての迷光を防ぐこ とが出来た。

2.2.6 ユーザー支援

将来のX線天文学に向けて、軽量かつ高解像度 のX線望遠鏡が望まれている。そのために、炭素 繊維強化プラスチック(CFRP)による反射鏡基板 開発が試みられている。CFRP 基板なら、Wolter-I 型望遠鏡の二次曲面を容易に再現出来るので、角度 分解能の向上が期待出来る。この計画は平成24年 度より、独立行政法人科学技術振興機構 研究成果 展開事業(先端計測分析技術・機器開発プログラ ム)に、研究課題「CFRP を用いた超軽量精密光学 素子の開発」代表 國枝秀世として採択された。こ のプログラムの一環として、実験責任者 粟木久光 「CFRP 基板を用いた軽量次世代硬 X 線望遠鏡の性 能評価」が、2012B期、2013A期、2013B期に 採択され、BL20B2によるX線照射実験を行った。 我々は BL20B2の PU として、この実験をサポート した。

ASTRO-H Soft Gamma-ray Detector に搭載され る高精細金属コリメータの性能評価には、平行度の 高いX線ビームが必要である。そのために、2011 年11月に我々のPUとしての実験時間の一部を使 用して、コリメータへのX線照射実験を行った。 その結果、所定のX線透過率を持っていることが わかった。

2011B1010「衛星搭載用硬 X 線ガンマ線撮像検 出器の応答測定」実験責任者 国分紀秀(宇宙科学 研究所)の実験を PU としてサポートした。これは、 HXT の焦点面に置く検出器 Hard X-ray Imager (HXI)に X 線を照射し、性能評価する実験であり、 所定の性能が出ていることを確認した。

2010B1551「Hard X-ray (< 80 keV) characterization of a high angular resolution (20 arcsec) optic prototype for the New Hard X-ray Mission」実験責任 者 Daniele Spiga (ブレラ天文台)の実験を、PU としてサポートした。我々が構築した X 線望遠鏡 評価システムを利用して、図4のようなセットアッ プで X 線照射実験を行った。

2.3 まとめ

以上のように、本 PU 研究期間で HXT の地上較 正実験はほぼ想定通り進めることが出来た。そして、 HXT はほぼ想定通りの性能を持っていることがわ かり、安心して先のステージへと進むことが出来る。 ASTRO-H は2015年度の打ち上げが予定されてお り、我々は HXT が大きな成果を生み出すことを楽 しみにしている。また、国際共同研究を含む各種の 共同研究への発展も行うことが出来た。これらの成 果は、BL20B2 担当の上杉健太朗氏、鈴木芳生氏ら の多大な尽力に負うところが非常に大きい。ここに 厚く御礼申し上げます。 (3) 成果リスト(査読有り論文)

SPring-8利用研究成果登録データベースに登録済み で、PU課題番号が関連づけられた査読付き論文のみを 掲載します。(その他、PUとして支援した一般課題の発 表論文やポスター発表、受賞歴など多数の成果があり ますが、掲載スペースの都合上割愛しています。)

[1] SPring-8 publication ID = 25795

Y. Yao: "Theoretical Analysis, Design and Fabrication of Supermirrors for Hard X-ray Telescopes" Doctor Thesis (Nagoya University) (2010).

[2] SPring-8 publication ID = 27150

T. Miyazawa *et al.*: "Recent Results of Hard X-ray Characterization of ASTRO-H HXT at SPring-8" *Proceedings of SPIE* **8443** (2012) 84435C.

[3] SPring-8 publication ID = 27151

H. Mori *et al.*: "The Pre-Collimator for the ASTRO-H X-ray Telescopes: Shielding from Stray Lights" *Proceedings of SPIE* **8443** (2012) 84435B.

[4] SPring-8 publication ID = 27152
H. Awaki *et al.*: "Current Status of ASTRO-H Hard X-ray Telescopes (HXTs)" *Proceedings of SPIE* 8443

(2012) 844324.

[5] SPring-8 publication ID = 27154

T. Miyazawa *et al.*: "The Current Status of Reflector Production and Hard X-ray Characterization for ASTRO-H/HXT" *Proceedings of SPIE* **8147** (2011) 814703.

[6] SPring-8 publication ID = 27155

T. Miyazawa *et al.*: "Current Status of Hard X-ray Characterization of ASTRO-H HXT at SPring-8" *Proceedings of SPIE* **7732** (2010) 77323I.

[7] SPring-8 publication ID = 27156 T. Miyazawa *et al.*: "Recent Results from Hard X-ray

Telescope Characterization at SPring-8" *Proceedings* of SPIE **7437** (2009) 74371P.

[8] SPring-8 publication ID = 28059

H. Awaki *et al.*: "The Hard X-ray Telescopes to be onboard ASTRO-H" *Applied Optics* **32** (2014) 7664-7676.

<u>松本 浩典 MATSUMOTO Hironori</u>

名古屋大学 現象解析研究センター 〒464-8602 愛知県名古屋市千種区不老町 TEL:052-788-6268 e-mail:matumoto@u.phys.nagoya-u.ac.jp

<u>國枝 秀世 KUNIEDA Hideyo</u>

名古屋大学大学院 理学研究科 〒464-8602 愛知県名古屋市千種区不老町 TEL:052-788-6268 e-mail:kunieda@u.phys.nagoya-u.ac.jp