Outline of SPring-8 Public Beamlines under Construction (from the SPring-8 www site*)

*)SPring-8 Homepage address : http://www.spring8.or.jp/

JAERI-RIKEN SPring-8 Project Team Experimental Group

partial operation in Oct. 1997

full operation in Oct. 1997

Public Beamline

- BL01B1 XAFS
- <u>BL02B1</u> Crystal Structure Analysis
- <u>BL04B1</u> High Temperature Research
- <u>BL08W</u> High Energy Inelastic Scattering
- <u>BL09XU</u> Nuclear Resonant Scattering
- <u>BL10XU</u> Extremely Dense State
- <u>BL25SU</u> Soft X-ray Spectroscopy of Solid
- BL27SU Soft X-ray Photochemistry
- <u>BL39XU</u> Physicochemical Analysis
- <u>BL41XU</u> Bio-Crystallography

• Beamline for the Research and Development

• BL47XU R&D 1 full operation in Oct. 1997

JAERI Beamline

<u>RIKEN Beamline</u>

• Location of Beamlines

• Technical Information of Beamline

Insertion Device

kimura@spring8.or.jp Last modified : Oct 16,1996

BL01B1 —XAFS—

Location :	BL-01 Bending Magnet #1 BL.		
Person in Charge :	Tomoya URUGA (e-mail:urug	Tomoya URUGA (e-mail:urugat@spring8.or.jp)	
Subgroup :	Broad Energy Band XAFS		
	Device	Bending Magnet, E _c =28.9keV	
	Tatalana	220W(1, 100, A)	

Source Characteristics :	Total power	220W (I=100mA)
	Power density	1.5kW/mrad ² (I=100mA)
	Source size at 2% coupling	S _x =0.182mm, S _y =0.058mm, S _y =0.065mrad

Optics :

Distance from source	Optical Element	Function
32.7m	first mirror	collimation, higher harmonics elimination
35.7m adjustable inclined double crystal monochron		monochromatization, sagital focusing
42.3m	second mirror	meridional focusing, higher harmonics elimination

Energy range: 3.5-90keV

X-ray at Sample :

Energy resolution: DE/E=10⁻⁴ Photon flux: 10⁹-10¹¹ph/s

BM1 (02B1) : Crystal Structure Analysis BM3 (01B1) : XAFS

@spring8.or.jp

All material on this page and pages on www.spring8.or.jp are copyrighted by SPring-8, 1996. Last modified: May 1, 1996

The beamline called Crystal Structure Analysis is assigned to four subgroups, that is, Structural Phase transition, Highly Precise Molecular Crystallography, Diffuse Scattering and High-Resolution Powder groups. These groups handle materials to study structural aspects by fixed energy X-ray beam commonly. However, there are divergences in techniques such as crystal size, variation of atmospheres of samples, requirements of resolution function for the diffraction experiments and so on. The structural phase transition group became the group leader of this project to organize and converge the requirement for the system settled on the beamline.

The main concept of this beamline is to construct the machine as the general purpose for the diffraction experiments to include all of necessary demands of these four groups. They proposed the high flux and high energy beamline by using the radiation generated from a bending magnet in order.

- 1. to observe various weak diffraction such as diffuse scattering or superlattice diffraction utilizing the high flux radiation,
- 2. to collect a lot of diffraction data for precise structural analysis by utilizing high energy radiation and expanding the observable reciprocal lattice volume.

The experimental station is designing by the collaboration of four groups. The central part of the station is the sevenaxes diffractometer. It is very similar with the conventional six-axes diffractometer commonly used at many beamlines of synchrotron radiation facilities, and one extra two-theta axis is added. The purpose of the extra axis is to be specialized for the conventional structure analysis to give the high speed motor function. Off-center type chi-cradle is planned to put a cryostat, a furnace, a vacuum chamber and a spindle for powder sample on the phi-circle. Many other optional tools is be planning, for instance, a high precision solar slit, Imaging plate system for photographic method.

konishi@spring8.or.jp

All material on this page and pages on www.spring8.or.jp are copyrighted by SPring-8, 1996. Last modified: May 8, 1996

BL04B1 — High Temperature Research —

Location :	BL-04 Bending Magnet #1 BL.
Scientist in Charge :	Kazuhiko TSUJI (e-mail:tsuji@phys.keio.ac.jp)
In-house Staff :	Wataru UTSUMI (e-mail:utsumi@spring8.or.jp

Scientific Applications	X-ray diffraction for expanded fluids, liquids, and liquid alloys, XAFS, Small-angle x-ray scattering, Anomalous x-ray scattering (AXS) for multi-componet system.
Light Source Bending Magnet, 10-150keV	
Beam characteristics at sample	 Energy range 10-150keV Energy resolution 5(eV), white Beam Size 1 × 1 mm² Beam Divergence vertical < 0.05 mrad, horizontal < 0.5mrad Photon flux 10¹⁰ photons/sec/mm²/0.1% b.w. Beam Stability 0.1 (mm) Others white x-ray and moochomatized x-ray

Abstract

.....

The experimental hutches for the high temperature research will be built at the BL04B1 bending magnet beamline. This beamline has no monochrometer and white x-rays will be supplied for the experiment. Two scientific subgroups, high pressure mineral physics group and high temperature group, are planning to carry out their experiment in the two experimental stations tandemly built on this beamline.

Fig.1 Schematic view of transport channel of BL04B1

.....

High Pressure Mineral Physics

Research Subjects

- Structure of the Earth's Mantle and Core
- Magma and Molten Metal in the Earth's Interior
- In situ Observation of Diamond Synthesis

Facilities

• 1500 ton Large Volume Press with 6-8 Multi-Anvil Type High Pressure System 40 GPa, 2500 C

• Vertical and Horizontal Goniometer

The aim of the high pressure mineral physics group is to reveal the origin, evolution and present state of the internal structure of the Earth and other planets. For this purpose, various properties of planetary materials, such as iron, silicates, hydrogen and helium, will be investigated under high pressures and high temperatures. In particular, in situ x-ray diffraction experiment under high pressure and high temperature will be mainly carried out using the polychromatic x-rays from a bending magnet. The extreme pressure and temperature conditions corresponding to those of planetary interiors can be obtained with a multi-anvil type high pressure apparatus, which will be installed on this beamline. This high pressure apparatus has a 1500 ton ram-force uniaxial press with a cubic anvil type guide block, and is operated in the two-stage mode (so called 6-8 system) to reach the desired P-T conditions. This system has a capability of generating pressures up to 40 GPa and a temperature of 3000 K using a solid pressure medium. For the x-ray experiments, two single-axis goniometers (vertical and horizontal directions) are equipped by the high pressure press. The Ge solid state detector is used for the energy dispersive x-ray diffraction experiments.

.....

High Temperature

Research Subjects

- Structural Studies for Expanded Fluid Metals and Semiconductors
- Partial Structures in Multi-Component System
 - o Anomalous X-ray Scattering
 - o XAFS
- Structural Studies at Extremely High Temperatures

Facilities

• High Pressure Gas Vessel

Helium 2000 kg/cm², 1650 C

- Horizontal Goniometer
- Protection Wall

The high temperature group is planning to investigate the structural properties of disordered materials under high temperatures. One of the biggest topics is the structural studies of expanded fluid metals and semiconductors. When liquid metals are heated and pressure is applied to prevent boiling, significant density decreases can be achieved. When temperature is elevated at low pressure, a first-order phase transition from liquid to gas occurs accompanied with increasing pressure, and disappears at the critical point. At the pressure higher than this critical pressure, the volume of expanded fluid can be changed continuously in a wide range by heating. The structure of these expanded fluids, such as Hg and Se, will be investigated in a wide density range by the x-ray diffraction measurements and the small-angle x-ray scattering. In the experimental station, a high pressure gas vessel and an energy dispersive x-ray diffractometer will be installed. This high pressure vessel permits x-ray diffraction measurements at high temperature and pressure up to 1650 C and 2000 kg/cm². Since helium high pressure gas is used as pressure medium, all these facilities will be placed in small rooms surrounded by the protection wall built inside the hutch.

.....

utsumi@spring8.or.jp

All material on this page and pages on www.spring8.or.jp are copyrighted by SPring-8, 1996. Last modified: July 30, 1996

PUBLIC BEAMLINE -

BL08W —High Energy Inelastic Scattering —

.

Location :	BL-08 Insertion Device BL.		
Person in Charge :	Hitoshi YAMAOKA (e-mail:yamaoka@spring8.or.jp)		
Subgroups :	High Energy Inelastic Scattering		
	Magnetic C	Compton Scattering	
Scientific Applications :	High-resolu	ution Compton Scattering	
	High-energ	y Bragg Scattering	
		Device	Elliptic multipole wiggler
		l _u	12cm
	N		37
Source Characteristics :	Critical energy		42.6keV at K _y =11.2
	Total Power		17.9kW at $K_y = 11.2$
	Peak Power density		160kW/mrad ² at K _y =11.2
	On-aixs degree of circular polarization		0.76 at 300keV, K_y =11.2, K_x =0.6
		Asymmetric Johanson mono	chromator, Si(771)
Station A :	X-ray energy: 300keV		
(for Magnetic	Optics :	: Energy resolution: $DE/E = 5x10^{-3}$	
Compton Scattering)	X-ray beam size at sample : 3mm(H)x1mm(W)		
		X-ray flux at sample: 5x10 ¹² ph/s at 300keV	
		Doubly bent monochromator	, Si(400)
		-	

Station B :X-ray energy : 100-150keV(for High-resolutionOptics :Energy resolution: DE/E<1x10⁻³Compton Scattering)X-ray beam size at sample : 0.5mm(H)x0.5mm(W)

@spring8.or.jp

All material on this page and pages on www.spring8.or.jp are copyrighted by SPring-8, 1996. Last modified: May 1, 1996

X-ray flux at sample : 3.3x1013ph/s at 100keV

 Location :
 BL-09 Insertion Device BL.

 Person in Charge :
 Taikan HARAMI (e-mail:taikan@spring8.or.jp)

 Subgroups :
 Nuclear Resonant Scattering

 Surface and Interface Structure

	Device	In-vacuum-type undulator
	l _u	3.2cm
	N	140
Source Characteristics :	Tunable range	6-80keV
	Brilliance	1.5x1019 ph/s/mrad2/mm2/0.1%b.w. at 14.4keV
	Total Power	1.31kW at 14.4keV
	Power density	141kW/mrad ² at 14.4keV
	Source size	$S_x=0.41$ mm, $S_y=0.035$ mm, $S_x=0.017$ mrad, $S_y=0.0039$ mrad

Optics :	Distance from source	Optical Element	Description
	40m	Rotated-inclined double crystal monochromator	Energy resolution: DE/E $^{-4}$

XU2 (09XU) : Nuclear Resonant Scattering

taikan@spring8.or.jp

Source Characteristics :

All material on this page and pages on www.spring8.or.jp are copyrighted by SPring-8, 1996. Last modified: July 2, 1996

BL10XU — Extremely Dense State —

Location :BL-10 Insertion Device BL.Person in Charge :Kentaro SUZUYA (e-mail:suzuya@sp8sun.spring8.or.jp)Subgroups :Structural Properties of Extremely Dense Materials
High Brilliance XAFS

Device	In-vacuum-type undulator
l _u	3.2cm
Ν	140
Tunable range	>5keV
Brilliance	2x10 ¹⁹ ph/s/mrad ² /mm ² /0.1%b.w. (I=100mA)
Total Power	5kW
Power density	300kW/mrad ²

Optics :

Distance from source	Optical Element	Function
36m	rotated-inclined double crystal monochromator	monochromatization of 5-60keV X-rays
43m	double-flat mirror system (fixed exit double mirrors)	cut off energy: 10-20keV
56m	Bragg Fresnel Lens	

XU3 (10XU) : Extremely Dense State

suzuya@spring8.or.jp

All material on this page and pages on www.spring8.or.jp are copyrighted by SPring-8, 1996. Last modified: July 3, 1996

BL25SU — Soft X-ray Spectroscopy of Solid —

Location :	В
Person in Charge :	Y
Subgroups :	S

BL-25 Insertion Device BL.Y. SAITOH (e-mail:ysaitoh@spring8.or.jp)Soft X-ray Spectroscopy of Solid

	Device	Twin helical undulator Fast helicity modulation
	l_{u}	120mm
	Ν	12
:	Tunable range	0.5-3keV
	Brilliance	$6.65 \times 10^{17} \text{ ph/s/mrad}^2/\text{mm}^2/0.1\% \text{ b.w.}$
	Total Power at 1keV	667.5W
	Power density at 1keV	0.862kW/mrad ²
	Source size	$S_x = 0.41 \text{ mm}, S_y = 0.035 \text{ mm}, S_x = 0.033 \text{ mrad}, S_y = 0.029 \text{ mrad}$

Source Characteristics

Optics :

X-ray at Sample :

Distance from source	Optical Element	Function
38m	cylindrical mirror (M _h)	deflection and horizontal focusing
40m	spherical mirror (M_v)	vertical focusing at the entrance slit
50-71.9m	constant deviation monochromator with varied-space plane gratings (S_1 - M_1 or M_2 -G- S_2)	monochromatization
76.4m, 80.9m	cylindrical mirrors (M_3, M_4)	focusing the beam onto the sample

Energy resolution: E/DE > 10000Photon flux: $> 10^{13}$ ph/s Beam size: < 0.1mm

ysaitoh@sp8sun.spring8.or.jp

.

All material on this page and pages on www.spring8.or.jp are copyrighted by SPring-8, 1996. Last modified: May 1, 1996

BL27SU —Soft X-ray Photochemistry—

Location :BL-27 Insertion Device BL.Person in Charge :T. Sekiguchi (e-mail:tsekiguc@spring8.or.jp)Subgroups :Soft X-ray Photochemistry
Soft X-ray CVD

PUBLIC BEAMLINE -

	High resolution molecular spectroscopy		
	Photoionization dynamics by various correlation measurements		
	Dynamics of inner-shell excited molecules		
Scientific Applications :	Production and dynamics of novel core-excited states by SR(UR)-laser double resonance		
	techniques		
	Site-specific disso	ciation processes of adsorbed molecules	
	Growth of thin film	n of functional material	
	Micro fabrication by functional material etching		
	Clarification of the reaction mechanics for deposition and process		
	Device	Figure-8 undulator	
	l _u	100mm	
	N	44	
Source Characteristics :	Tunable range	0.5-5keV	
	Brilliance	1.1x10 ¹⁸ ph/s/mrad ² /mm ² /0.1% b.w. at 500eV (I=100mA)	
	Total Power	2.7kW at 1st harmonic(500eV)	
	Power density	1.7kW/mrad ² at 1st harmonic(500eV)	
	Energy range: 0.5-	2keV	
	Linearly polarized		
	Photon flux: 10 ¹² pl	h/s	
X-ray at Sample :	Beam size: 0.5x0.5mm ²		
	Resolution: $E/DE = 10000$		
	and microbeam capability of several-some tens micrometers diameter in the energy range		
	of 0.5-5keV		

 Keep Out-Area
 Grating Monochromator
 Si
 Soft X-ray Photochemistry Beamline
 Minochromator
 Minochromator

 Soft X-ray Photochemistry Beamline
 Minochromator
 Si
 Si
 Si
 Si

 Readiation Shield Wall
 Electron Storage Ring
 Electron Storage Ring
 Si
 Si

 M_0 , M_0 : Horizontally deflecting mirror, M_1 : Vertically focusing mirror Monochromator/ S_1 : Entrance slit, S_2 : Exit slit, M_2 : Focusing mirror, G : Grating M_3 : refocusing mirror, Q : Sample position

tsekiguc@spring8.or.jp Last modified: Aug. 6, 1996 BL39XU — Physicochemical Analysis —

Location :	BL-39 Insertion Device BL.		
Person in Charge :	Shunji GOTO (e-mail:sgoto@spring8.or.jp)		
	X-ray Magnetic Absorption and Scattering		
Subgroups :	Spectrochemical Analysis		
	Medical Application		
	Device	In-vacuum-type undulator	
	Period length	3.2cm	
	Peroid number	140	
Source Characteristics :	Tunable range	5-70keV (fundamental-5th)	
	Brilliance	2x10 ¹⁹ ph/s/mrad ² /mm ² /0.1%b.w. (I=100mA)	
	Total power	11kW at 5keV, K=2.3	
	Power density	470kW/mrad ²	

Optics :

Distance from source	Optical Element	Function
36m	rotated-inclined double crystal monochromator	monochromatization, high heat load elimination
44m	platinum coated plane mirror	higher harmonics elimination, horizontal deflection

X-rays at Sample :

Energy range : 5-20keV Energy resolution : 2x10⁻⁴ Photon flux : 10¹⁵ph/s Beam divergence : < 0.1mrad Beam size : < 1mm

sgoto@spring8.or.jp

All material on this page and pages on www.spring8.or.jp are copyrighted by SPring-8, 1996. Last modified: May 1, 1996

BL41XU — Bio-Crystallography —

Location :	BL41- Insertion Device BL.	
Person in Charge :	Nobuo KAMIYA (e-mail:nkamiya@postman.riken.go.jp)	
Subgroups :	Biological Structure	
	X-ray Structural Biology	
	Device	In-vacuum-type undulator
	Period length	3.2cm
	Peroid number	140
Source Characteristics :	Tunable range	>9keV

X-ray at sample :

Brilliance2x1019 ph/s/mrad2/mm2/0.1%b.w. (I=100mA)Total power5kWPower density300kW/mrad2

Optics :

Distance from source	Optical Element	Function
35.9m	rotated-inclined double crystal monochromator	elimination of heat load, monochromatization
39.5m	vertical focusing mirror	3:1 demagnification
44.0m	horizontal focusing mirror	5:1 demagnification

Energy range: 9-38keV Energy resolution: 2x10⁻⁴ (< 10⁻³ over 20keV) Photon flux: 10¹⁴ph/s Beam divergence: 0.1 mrad

Beam size: 0.1 mm

nkamiya@postman.riken.go.jp Last modified: Aug. 7, 1996