所長室から

財団法人高輝度光科学研究センター 副理事長 放射光研究所長 上坪 宏道

2000Bのスケジュール

前号のこの欄で、今年の夏期長期運転停止期間中 にBL19LXUに長尺挿入光源を設置することと、蓄 積リングに4カ所の長直線部を設置する改造を行う ことを紹介した。その際、今回の作業は蓄積リング の大幅改造であり、場合によっては2000Bで電子ビ ームの性能が現在の性能よりいくらか下がる可能性 があることを述べた。しかし、その後の加速器グル ープによる精力的な検討の結果、ビーム光学的には 現状と同じくHHLV(水平方向が高ベータ、垂直方 向が低ベータ)モードによる運転が可能であること が判り、現在ではこの大改造でビームの質が悪くな ることはないと判断している。また2000Bの運転ス ケジュールは、8月下旬にマシン運転を開始した後 2週間かけてマシンの立ち上げ調整を行い、引き続 いて第8サイクル(3週間)でマシン及びビームラ イン調整を行うことにしている。したがって通常の ユーザータイムは10月の第1週からの第9サイクルか ら始まり、第12サイクルで終了する。その結果、 2000Bにはユーザータイムとして156シフトが確保 されることになる。なお、スケジュールの最終決定 は夏期長期運転停止期間の作業予定を再度チェック して、2000Bの実験課題募集締め切り前に行うこと にしている。

SPring-8 Advisory Council (SAC) & APS-ESRF-SPring-8ワークショップ

SACは3月14日から16日まで、外国人4名、日本 人3名の委員が参加してSPring-8で開催された。委 員長はG. Materlik教授(DESY) 副委員長は太田 俊明教授(東大)である。初めに組織と運営、予算、 施設の現状、共同利用状況などが報告され、その後 研究のハイライトや研究計画が発表された。主な報 告の後では質疑応答にかなりの時間をとったので、 委員から多くの質疑と意見が出され、活発な討論が 行われた。2日目には委員だけの検討時間もとり、 また3日目の午前中にclosed sessionをとって、報告 書の骨子が議論された。その概要は最後に委員長か らSPring-8側にも説明されたが、4月末頃までには recommendationとしてまとめられる予定である。

会議の期間中にG. Materlik教授とはいろいろな 問題について意見を交換する機会が多かった。その 中で、SPring-8では多くのビームライン(BL)で 課題採択率が70~80%であるがシフト採択率が50% を切っていることが話題になった。研究の効率を高 めて優れた成果を挙げるためには、必要なビームタ イムはできるだけ確保できるような課題採択が望ま しい。ビームラインによる違いを認めた上で、課題 採択率を下げてシフト採択率を上げる採択法を検討 する時期に来ているということで意見が一致した。

4月9日から12日までAPS-ESRF-SPring-8ワークシ ョップがSPring-8普及棟で開催された。今回はAPS から13名、ESRFから12名、SPring-8からも30名が 参加して、活発な意見交換が行われた。10日は全体 会議で各施設の状況報告とハイライトの紹介、11日 は2つに分かれて加速器、ビームライン、挿入光源、 放射線安全、実験技術などが議論された。このワー クショップは毎年3極の持ち回りで開催されており、 共通の問題について情報交換や共同研究、研究協力 を行うことにしている。今回は電子軌道の高安定化、 加速器及びビームライン(光学素子を含む)の高熱 負荷対策、ビームライン自動化と中性子遮蔽計算が 取り上げられた。12日には加速器グループやBLグ ループ、安全グループなどが個別に会合を開いて討 論を続行した。

ビームライン自動化は今回初めて取り上げられた 問題で、ESRFのY. Petroff所長がOverviewの中で 提起した。彼によると、ESRFの蛋白質構造解析BL では放射光実験に不慣れな研究グループが、短い時 間に多くの蛋白質結晶の回折実験を行っている。し

かもグループによっては1年に1、2回しか来ないこ とも多いので、BLに習熟するよりはbeamline scientistsに頼ることが多く、彼らの負担が大きく なっている。それを避けるためにビームラインと実 験ステーションを自動化する試みが始まった。目標 は、各実験グループが実験室でホルダーに多数の蛋 白質結晶をセットして持参し、これをステーション の所定の場所に取り付ければ、ビームスポット位置 や結晶の向きなどが自動的に最適化されデータがと れるBLを実現することである。

これとは別にSPring-8でも高度化計画の一環とし てBL自動化が検討されている。これはSPring-8の 高輝度性を最大限に利用するためにはX線マイクロ ビームの高度利用が不可欠で、そのために電子軌道 を高安定化するとともに X 線ビーム位置 (できれば X線エネルギーも含めて)のnon-destructive計測法 を開発して、試料上のX線スポットを安定化する案 である。今後多くのユーザーがSPring-8の性能をギ リギリまで使って実験するためには、このような高 度化が必要になるであろう。

ビームライン担当者の役割

ビームライン(BL)の建設は当初計画を大幅に 上回って順調に進んでおり、共同利用に供せられる BLの数も着実に増加している。これとともに、最 近一部のビームラインでBL担当者のオーバーワー クが顕在化してきた。

ご存知のとおりSPring-8は法律によって規定され た共同利用施設であり、この法律に基づいてJASRI が放射光利用研究促進機構に指定されている。それ によるとJASRIの業務は、供用業務(共用施設を試 験研究を行う者の共用に供することおよび専用施設 を利用して試験研究を行う者に放射光の提供その他 の便宜を供与すること) 支援業務 (施設利用研究 の実施に関して情報の提供及び相談その他の援助を 行うこと)のほか、施設利用研究の促進に資する試 験研究を行うことや原研・理研の委託を受けて共用 施設の運転維持管理に当たることとなっている。さ らに原研・理研の委託を受けてSPring-8全体の運 転、維持・管理、高度化もJASRIが担当していて、 必要な経費は全て国費でまかなわれている。

JASRIの業務をビームラインについて言えば、共 同利用BL建設に参加するとともに、それらの整備、 立ち上げ調整、利用者に対する共同利用の技術指導 と相談および故障の対応と、将来の発展を目指した 高度化が主なものである。また専用施設についても、 光源やフロントエンド、光学系などの標準化部品、 インターロック制御など蓄積リングに直接関わる部 分か全BLに共通した部分に対する支援はJASRIの 役割である。

JASRIではそのため全BLを横断的に担当する挿 入光源、フロントエンド、光学系、真空およびイン ターロック・制御担当グループと、検出器を含む機 器開発グループ、各共用BLに配置されるBL担当者 を置いている。その任にあたる研究者、技術者及び テクニカルスタッフの経費は国からの予算に含まれ ている。したがってその総数が予算で決められてい るのは、他の国立研究機関と同じである。これまで にJASRIでは、各共同利用BLにBL担当者2名を当て るほか、BL2本に1名のテクニカルスタッフを配置 することを目指して予算計画及び採用計画を進めて きた。残念なことに現在までに充足できたBL担当 者は各BLに1名であるが、JASRIでは引き続いて BL担当者の増強に努力している。

なお、ここで注意して頂きたいことは、SPring-8 は24時間連続運転で共同利用に供されているが、マ シン運転要員とBL当番のみがシフト態勢で24時間 勤務をしており、共用業務や支援業務は原則として 通常勤務の業務として対応していることである。言 い換えると、BL担当者のユーザー支援は緊急時を 除いて通常の勤務時間内に行うことがJASRIの基本 方針である。

このような現状の中で、一部のBLでBL担当者の オーバーワークが目立つようになった。その要因に ついては幾つか考えられ単純には決められないが、 理由の一つとして、実験チームの交代あるいはトラ ブルによるユーザーからの要請によって、夜間や休 日に出勤を余儀なくされたことを上げることができ る。これまでにも利用促進部門長名で各ユーザーグ ループに連絡されていることであるが、ここで改め てJASRIの現状と基本的な考え方を述べ、BL担当 者のオーバーワークを避けるためユーザー支援を通 <u>常勤務時間内に行うこと</u>ができるよう、ユーザー各 位の理解と協力をお願いする次第である。

なお対策としては、ユーザーに対する講習会の開 催やBLを使い易くするとともにマニュアルの整備 などを急ぐほか、BLによっては採択された課題の 実験がその期で完結できるように、採択率を下げて でも十分なビームタイムを与えるような課題採択の 仕組みにすることも検討するつもりである。