BL09XU核共鳴散乱実験ステーションの現状

放射光利用研究促進機構 財団法人高輝度光科学研究センター ビームライン部門 矢橋 牧名

はじめに

本稿では、BL09XUの現状として、ビームライン、 実験ステーション、共同利用実験の概要について述 べ、最後に少数バンチ運転について今後の展望をま とめる。

ちなみに、本誌98年3月号p.8以降の記事の中で、 既に本ビームラインを紹介してあるため、一部重複 する箇所があるが、ご了承頂きたい。

ビームライン

BL09XUでは、挿入光源として真空封止型直線ア ンジュレータ(周期長32mm、周期数140)、二結晶 分光器としてSi 111反射の回転傾斜型分光器が、そ れぞれ用いられている。光学ハッチ内の機器配置を 図1に示す。

本ビームラインでは、97年7月初めから、ビーム ラインのコミッショニング(試験調整運転)を開始 し、同年10月初めに終了した。コミッショニング終 了時(共同利用開始前)に測定された単色光(E= 14.4keV)のフォトンフラックスは、PINフォトダイ オードで測定されたカレントをフォトン数に換算し て、2×10¹² cpsとなった。 その後、98年2月の冬期シャットダウン時に、二 結晶分光器の第一結晶(水冷ピンポスト結晶)を入 れ替えた。それまでの結晶は、ピンポスト加工部と ベース部の貼り合せに金が用いられていたが、入れ 替え後のものはアルミニウムを使用している。後者 の方が、接合歪みが少なく、良質であると予想され ていたが、交換後の測定結果もそれを裏付けるもの となり、フォトンフラックスは4×10¹² cpsと2倍にな った。しかし、それでもなお水路による歪みのパタ ーンが観測されているため、これを改良することに より、さらに数倍フラックスが向上することが期待 されている。

実験ステーション

BL09XU実験ステーションは、核共鳴散乱(代表 依田芳卓氏(東大・工))と、表面界面(代表 高橋 敏男氏(東大・物性研))の二つのサブグループが 中心となって整備が進められている。

実験ハッチ内は、上流から順に2つの定盤と多軸 回折計が配置されている(図2)。上流側の定盤上に は、数meV以下のエネルギー分解能をもつ各種高分 解能分光器がセットできる。この他にも各定盤にス

図1 BL09XU光学ハッチ内機器配置図

テッピングモータ駆動による精密ゴニオメータ、各 種ステージ、スリット類が複数台設置されており、 核共鳴散乱をはじめとする様々な高分解能回折・散 乱実験が可能となっている。また、下流側の装置を 使用する際は、空気による散乱を防ぐため、真空ビ ームパスを利用できる。さらに、精密回折実験にお いては、長時間にわたる温度の安定性が不可欠であ るが、BL09XUでは、実験ハッチ全体に空調が施さ れ、さらに各定盤にはビニールのカバーで覆いがで きるようになっており、定盤付近の温度の時間的変 動は1日で0.03 程度に保たれている。

次に、検出器としては、汎用のイオンチェンバ ー・Na-Iシンチレーションカウンターの他に、ダ イナミックレンジの広いPINフォトダイオードや、 高速のアバランシェフォトダイオード(APD、半値 幅で数百psec~数nsec)が利用できる。計測系も、 それに合わせて特に高速タイミング系モジュールを 充実させている。

これらの実験ステーションの機器制御は、依田氏 が中心となって開発した、Lab - Viewベースのソフ トウェアによって行われている。これは、ステッピ ングモータコントローラ、スケーラ、MCA等様々 な機器の操作を、統合された環境で行えることと、 またソフトウェアの開発を機器ごとに分離して行え ることが特徴である。

Top View

共同利用実験

昨年10月の共同利用開始より、核共鳴散乱SGと 表面界面SGにより共同利用実験が行われてきた。

これまでに、核共鳴散乱SGによって行われた実 験として、

- (1) ⁵⁷Feの核共鳴散乱をプローブとした、各種物質における非弾性・準弾性散乱実験(瀬戸誠氏(京大・原子炉)他)
- (2) 強磁性体アモルファス中の⁵⁷Feからの核共鳴
 前方散乱の測定(那須三郎氏(阪大・基礎工)
 他)
- (3)核共鳴カスケード散乱の観測(依田氏他)
- (4) X線パラメトリック散乱の観測(依田氏)
- (5)高分解能分光器の性能評価(張小威氏(PF)他)
- (6) 多素子APDの性能試験(岸本俊二氏(PF)他)
- (7)⁵⁷Feからの内部転換電子の観測(岡野達男氏 (東大・生産研))

等があげられる。一例として、(3)の¹⁶¹Dyの第3励 起準位(74.57keV)を励起させ、第1励起準位 (25.65keV)からのカスケード放出を測定した結果 を図3に示す。アルミニウムのアッテネータをサン プル及び検出器の前に入れて調整することで、入射 光は第3励起準位付近、検出される光は第1励起準位 付近のエネルギーのフォトンとみなせ、この状態で、 入射光のエネルギーを第3励起準位の共鳴エネルギ ーに合わせると、カスケード放出されたフォトンが

図3 ¹⁶¹Dyからのカスケード散乱の測定結果

時間遅れ成分として観測された(約0.1cps)。今後 も、高エネルギー領域の他のメスバウアー核種への アプローチや、カスケード遷移を利用した高いS/N 比の実験が期待される。

また、表面界面SGは、これまで多軸回折計の立 ち上げを中心に行ってきた。立ち上げはほぼ完了し、 引き続いてX線回折散乱法による表面・界面の構造 研究や、X線CTR散乱における多波回折効果の研究 等が行われる予定である

少数バンチ運転

SPring-8では、97年秋から少数バンチ運転のスタ ディが進められ、同年11月末以降、等間隔21バンチ モードでの共同利用運転(バンチ間隔228nsec、蓄 積電流20mA)が可能になった。

98年5月現在、20mA、21バンチ運転時には、蓄積 リング電子ビームのライフタイム(入射直後)は20 時間程度、入射回数は1日に2回、入射にかかる時間 (0mAから20mAまで)は30分程度である。また、バ ンチ不純度は、10⁻⁶から10⁻⁶程度となっている。

このように、現在の少数バンチ運転は、良い純度 を保つとともに、他のユーザーにも 入射時間 ラ イフタイムの2点において多少我慢して頂くことで 利用可能な状態といえよう。しかし、今年から来年 にかけて、蓄積電流値は100mAまで増加していく予 定である。この場合、単純計算からいくと、 入射 時間2時間以上 ライフタイム数時間となり、少数 バンチと100mA運転の共存は困難となる。

この問題を解消するため、加速器及びビームライ ングループによって、マシンスタディや運転モード の検討が進められている。まず に関しては、本誌 98年3月号p.1以降で既に紹介されたように、線型加 速器の電子銃のショートパルスモードへの変更やシ ンクロトロンの入射・出射モードの改良等のスタデ ィが現在試みられており、これらによって大幅な入 射時間の短縮が計られる予定である。また に関し ては、複数の連続するバケットから構成された等間 隔の運転モードにすることが、新たに提案されてい る。例えば、100mAで等間隔42バンチ運転 (114nsec間隔)にした場合、各バンチあたりの電流 値は2.4mAとなるが、それぞれのバンチの直前と直 後のバケットにも電子をつめると、各バンチの電子 数は1/3に減少し、ライフタイムも現在と大差ない とみられる。核共鳴散乱からみると、理想的には無 限小が望ましい励起幅が数nsecの幅を持ってしまう

ことになるが、精密な時間スペクトルの情報を必要 としない実験は、この方法でも問題なく、かつ現在 多くの実験がこの部類に入る。よって、通常時の大 電流・少数バンチ運転の両立のためには、上記のよ うな等間隔・連続バケットの運転モードが有効であ ると考えている。ただし、精密な時間スペクトル情 報が要求される実験の場合は、別途考慮が必要とな るため、引き続き関係者のご協力をお願いしたい。

おわりに

ビームラインの立ち上げ・整備にあたり、サブグ ループ及びSPring-8スタッフの多くの人にご協力頂 いた。ここに改めて感謝の意を表する。