ベンダーによる偏向電磁石ビームラインのサジタル集光

日本原子力研究所 関西研究所 放射光科学研究センター米田安宏、松本 徳真 財団法人高輝度光科学研究センター ビームライン・技術部門 古川 行人 理化学研究所 播磨研究所 石川 哲也

Abstract

The performance of sagittal focusing for hard X-rays with a cylindrical bent crystal at the SPring-8 is described. The bending mechanism is designed for the SPring-8 standard bending-magnet beamlines. Two-dimensional focusing is achievable by combining sagittal horizontal focusing and vertical focusing mirror. The results underline that the two-dimensional focusing was achieved in the wide energy range by using an adjustable-inclined double crystal monochromator.

1.はじめに

偏向電磁石ビームラインは横方向の発散が縦方向 に比べて非常に大きい。SPring-8の偏向電磁石ビー ムラインの横方向の発散は1.5mradで、これは光源 から1m離れるとビームが1.5mmに広がることを意味 している。例えばBL14B1では回折計が発光点から 55m離れたところに設置されているが、この位置で はビームは82.5mmに広がってしまっている。このビ ームラインで使用している標準的なビームサイズが 1mmであるから、スリットによってビームを成形し てしまうとこのビームラインに導入されているX線 ビームの1/82.5しか使っていないことになる。そこ で広がったビームを集光し、実効的なビーム強度を 増大するために偏向電磁石ビームラインでは集光素 子が必須である。現在、SPring-8偏向電磁石ビーム ラインで最もポピュラーな横方向の集光素子はベン ドシリンドリカルミラーである。しかし、ミラーの 全反射条件を満たさない高エネルギー側の集光がで きないことやアパーチャが小さいためにビームの多 くをロスしてしまうなど、実験によってはベンドシ リンドリカルミラーが不向きな場合もある。そこで BL14B1では分光器の第2結晶に弯曲結晶を用いて 横方向の集光を行なう手法を採用し、結晶弯曲機構 (ベンダー)と結晶の開発を行なってきた。ベンダー

に要求されている条件は以下の通りで、非常に厳しい。

- SPring-8標準分光器の第2結晶としてインストールするため、ベンダーはコンパクトなものでなければならない。
- 2. ベンダー使用時でも分光器の定位置出射を可能 にするため、ベンダーによって弯曲結晶の曲 率を変えてもビームの出射位置が変わっては ならない。
- 3.偏向電磁石ビームラインのcritical energyが 28.9keVであるため、広範囲のエネルギーに 対応させなければならない。

こうした条件をクリアしたベンダーは1998年に BL14B1にインストールされた¹¹。幾何学的配置に よって定位置出射が可能になったベンダー¹²にアン チクラシカルベンドを避けるためのリブ付き結晶の 組み合わせによって、flux densityは15倍となり、 実用レベルに達したベンダーはBL14B1に次いで BL02B1、BL12B2にもインストールされた¹³⁴。

しかし、ベンダー用の結晶として、3mmピッチの リブ付き結晶を用いているため、集光サイズが3mm に制限されてしまっている。フォーカスサイズをさ らに小さくしflux densityのゲインをかせぎたいと いうユーザーの声に応えるために、2002年10月より 新しいデザインの結晶のR&Dを行なってきたので、 現状を報告する。

2. サジタルフォーカスベンダー

ベンダーは先述したように、SPring-8標準分光器 の結晶面を切替える機構に対応するためにコンパク トな設計にしてある(図1)。SPring-8の偏向電磁石 ビームラインのほとんどの分光器は発光点からの距 離が40m以内に設置してあるので、分光器位置での ビームの広がりは60mm以内である。従ってこのよう

図1 結晶弯曲機構

なコンパクトなベンダーでも、分光器位置では全て のビームを結晶で受けることができる。このベンダ ーに2mm厚の結晶をセットして円筒状に曲げ込んで ビームを集光する。

ベンダーにセットする結晶は、従来の3mmピッチ のリブのピッチを狭めるか、あるいはフラット結晶 を使うことが考えられる。リブのピッチを狭める場 合、結晶に入れる切れ込みの数が増えるために、受 光ビームのロスが大きくなり、flux densityの大幅 なゲインが見込めない。そこで、フラット結晶を用 いた集光にトライすることにした。

フラットな結晶をそのままベンダーで曲げ込んで も、アンチクラシカルベンディングのために、良好 な集光ビームが得られない。

そこでKushnirら ^{5,6}の文献を参考にして、図2の ようなベンダー用結晶を新たに作製した。

この結晶を用いてもアンチクラシカルベンドは生 じてしまうが、理想的な円筒部分を多く残すように 結晶の縦横比を決めている。結晶はフラット配置の 時、Si 311反射が使えるように加工した。

3. unribbed結晶のインストールとテスト

ベンダーの調整はまず、311反射を使って、 10keV(=22.246°)で行った。図3は結晶を曲げ 込んで曲率を小さくしていった時のビームプロファ イルをポラロイドフィルムで撮影したものである。 曲率が小さくなるにつれて、ビームが集光していく のがわかる。

図3 集光ビームのプロファイル(BL14B1 実験ハッチ ミラーなし)

図2 SPring-8ベンダー用unribbed結晶

図4 10keV fine focusの時のビームプロファイル

ここで、ミラーを挿入し(4mrad)後置ミラー による縦集光を行なった。この時のビームプロファ イルを図4に示す。横方向はベンダーによって、縦 方向はミラーによってサブミリ集光されている。

fine focusが得られた時の 1 ロッキングカーブ のプロファイルを図5に示す。非対称成分が少なく、 均等に結晶が曲がっていることがわかる。イントリ ンシックな幅が、2.3arcsecであるが、倍に広がって いる。このエネルギーでは、第一結晶に入射ビーム が直入射するため、第一結晶の熱歪みを考慮する必 要があるが、結晶を曲げ込む際のロッキングカーブ 幅の広がりは少なく抑えられている。

全ての調整終了後、ダイナミカルベンドモ ードで金属箔の吸収端測定を行なった。ベン ダーの最適な曲率半径はエネルギーによって 異なる。良好な集光条件を吸収端測定中も保 持するために、全ての測定点においてベンダ ーの曲率半径を最適化することをダイナミカ ルベンドモードという。金属箔はZn(K吸収 端=9.663keV)とTi(K吸収端=4.965keV) を用いた。Znは311反射を、Tiは面切替えを 行なって111反射を使って測定した。測定結 果を図6に示す。比較のためにBL01B1で通常 の平板結晶を使った測定結果も示してある。 どちらも同じ測定結果となっていることか ら、ダイナミカルベンドモードによるエネル ギーレゾリューションの劣化などは起こって いないことがわかる。

図6 (a) Si 311反射を用いて行なったZnフォイルの吸 収端測定。(b) Si 111 反射を用いて行なったTiフォ イルの吸収端測定。比較のためにベンダーを使わ ずにBL01B1で測定した結果を実線で示してある。

BEAMLINES

図7 57keV fine focusの時のビームプロファイル

ベンダーはベントシリンドリカルミラーでは集光 出来ないような高エネルギー領域においてもビーム 集光が可能である。図7は57keVにおいて、ビーム 幅を0.4mmまで集光させたときのスリットスキャン で得られたプロファイルである。

このように、新しくデザインした結晶を使うこと によって、横方向のビームサイズをサブミリ集光で きるようになった。BL14B1では、Si 111反射と311 反射を使って5~60keVまでの集光に成功している。 また、高エネルギーX線をサンプル直前でスリット で成形するとバックグラウンドが増大するため、ベ ンダー集光は単に実効ビーム強度を増やすだけでな く、S/N比を上げることにも有効である。

2003年の9月にBL19B2にもベンダーがインスト ールされたが、このベンダーはver.4である。結晶 のみならず、弯曲機構も1998年に初期タイプのベン ダーがインストールされて以来、ほぼ、年に1回の 割合で改良バージョンが製作されている。これは、 BL02B1やBL12B2などのビームラインから多くのフ ィードバックがあったためで、これらのビームライ ン担当者やユーザーの方々に感謝の意を表します。

参考文献

- [1] Y. Yoneda, N. Matsumoto, Y. Furukawa and T. Ishikawa : *S*Pring-8 Annual Report 1998 (1998) 183.
- [2] Y. Furukawa and T. Ishikawa : SPring-8 Annual Report 1995 (1995) 191.
- [3] Y. Yoneda, N. Matsumoto, Y. Furukawa and T. Ishikawa : J. Synchrotron Rad. 8 (2001) 18-21.

- [4] Y. Yoneda, N. Matsumoto, Y. Furukawa and T. Ishikawa : Nucl. Instrum. Methods A467-468 (2001) 370-372.
- [5] V. I. Kushnir, J. P. Quintana and P. Georgopoulos : Nucl. Inst. and Methods A328 (1993) 588-591.
- [6] J. P. Quintana, V. I. Kushnir and G. Rosenbaum : Nucl. Inst. and Methods A362 (1995) 592-594.

<u>米田 安宏 YONEDA Yasuhiro</u>

日本原子力研究所 関西研究所 放射光科学研究センター 〒679-5148 兵庫県佐用郡三日月町光都1-1-1 TEL:0791-58-2637 FAX:0791-58-2740 e-mail:yoneda@spring8.or.jp

<u>松本 徳真 MATSUMOTO Norimasa</u>

日本原子力研究所 関西研究所 放射光科学研究センター 〒679-5148 兵庫県佐用郡三日月町光都1-1-1 TEL:0791-58-2637 FAX:0791-58-2740 e-mail:matsu@spring8.or.jp

古川 行人 FURUKAWA Yukito

(財)高輝度光科学研究センター 放射光研究所 ビームライン・技術部門 〒679-5198 兵庫県佐用郡三日月町光都1-1-1 TEL:0791-58-2726 FAX:0791-58-0830 e-mail:furukawa@spring8.or.jp

<u>石川 哲也 ISHIKAWA Tetsuya</u>

理化学研究所 播磨研究所 〒679-5148 兵庫県佐用郡三日月町光都1-1-1 TEL:0791-58-2805 FAX:0791-58-2810 e-mail:ishikawa@spring8.or.jp