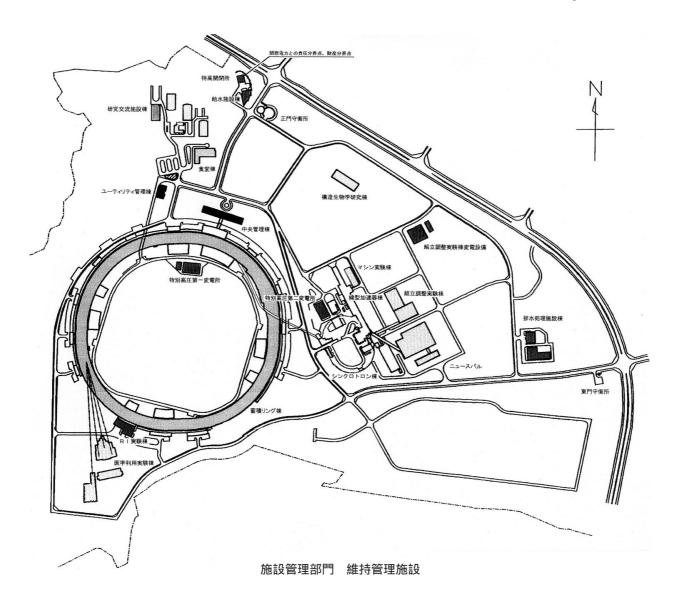
SPring-8の施設管理について


放射光利用研究促進機構 財団法人高輝度光科学研究センター 施設管理部門 市原 正弘

1. はじめに

施設管理部門はSPring-8における電気、水の供給 から排水処理に到る全ての一般ユーティリティー と、入射系及び蓄積リング系のマシン電源及びマシ ン冷却設備といった研究支援施設の大元を管理し、

その運用管理を行っている部門であります。平成9 年10月の供用開始を迎えるにあたり、これら施設の 維持管理に万全を期すと共に、研究支援業務の安定 達成を目標に努力しているところです。

理解を深めていただく上で、SPring-8サイト内に

ある施設管理部門に係わる諸施設を紹介しておきま すが、建家のあるところそれは全て管轄となり守備 範囲は相当な広さとなっておりますので、紙面の都 合上今回は一般ユーティリティーの代表例とマシン 直結のユーティリティーについてご紹介することに いたします。特に一般ユーティリティーでは、実験 に使用出来る薬品とその処理装置、マシン直結のユ ーティリティーに関しては、実験及びSPring-8全体 そのものの性能に直接関与するところが多く、この 部分に関して設計者の立場から紹介の重点をおいて みたいと思います。

2.施設の概要

(1)電源設備

一般ユーティリティーである電源設備は、77kV 特別高圧受電設備としてSPring-8サイト内全域の全 負荷電力を賄う設備として設けられている。

特別高圧開閉所

関西電力㈱テクノポリス変電所から77kVを2回線 で受電し、特別高圧第1変電所(蓄積リング系用変 電所)と特別高圧第2変電所(入射系用変電所)に それぞれ77kVで給電する箇所がこの開閉である。

特別高圧第1変電所

77kVを6.6kVに変圧し蓄積リングマシン系給電用 に20MVA 2系統を給電し、蓄積リング建家及び給 水施設棟などに6.6kV / 20MVA 1系統で給電してい る。特に重要な設備としては、後述の蓄積リング用 高調波フィルタ設備をこの変電所に併設してある。

特別高圧第2変電所

77kVを6.6kVに変圧し線型加速器電源用に 6.6kV / 5MVA 1系統を給電し、シンクロトロン電 源として6.6kV / 25MVA 1系統を給電している。更 に、入射系建家のほか排水処理棟等の電源用として は6.6kV / 5MVA 1系統を給電している。

また、入射系加速器系には直接給電ではなく、線 型加速器・シンクロトロンに対してそれぞれ二次変 電設備を設けマシン特有のニーズに対応した設備と している。それらは、以下の ~ であり、特有の 対応対策は ~ である。

線型加速器二次変電設備

6.6kVで受電したものを高圧変圧器4台で100V~ 400Vの所要電圧に降圧し、低圧配電盤から線型加 速器用マシン電源及び制御電源として給電してい る。また、この低圧配電盤からは、線型加速器冷却

設備用電源も給電している。

シンクロトロン二次変電設備

6.6kVで受電したものを、低圧マシン電源、冷却 設備電源用及び制御電源用に分け給電している。低 圧マシン電源、冷却設備電源用は高圧変圧器4台で 200V~400Vの所要電圧に降圧し、低圧配電盤から 給電し、制御電源用としては、高圧変圧器2台で 100V~200Vの所要電圧に降圧し、低圧配電盤から 給電している。

SSBT 二次変電設備

蓄積リングD変電設備から6.6kVで受電したもの を、高圧変圧器1台と低圧変圧器1台で100V~200V の所要電圧に降圧し、低圧配電盤からSSBT マシ ン及びその制御電源用として給電している。

高調波抑制対策

SPring-8マシン系から発生する高調波電流発生量 を抑制し、SPring-8施設以外への流出量を抑えるこ とが必要であり、この対策を講じている。この対策 は、「契約電力単位kWあたり電流流出抑制目標値」 (電気協同研究第46巻第2号)に基づき設計したもの である。

無効電力補償装置

この装置は特にシンクロトロン電磁石電源 (B.Q) 系統から約1秒周期で発生する最大約12,000KVarも の膨大な無効電力を抑制し有効利用化するため、無 効電力補償装置(SVC)を設置したものである。

本装置については、シンクロトロンの試験調整運 転中にも数回の精密調整を行い、初期設計以上の性 能にグレードアップしたものとなっている。

(2)排水処理施設

SPring-8全体から発生する排水を処理するもので あり、排水規定放流水質に処理するが処理能力は最 大250m3/日(8時間/日稼働)である。排水処理 施設棟には、SPring-8サイト内で種々発生する排水 の適正処理を行うため ~ の装置を設置し、その 処理対応を行っている。

原水・調整装置 :大きな挟雑物及び油分除去 凝縮沈澱水処理装置:シアンや重金属類等の除去

砂濾過・活性炭装置:SS分や有機物除去

汚泥処理装置 :処理過程に於ける発生汚泥

の処理装置

水質自動分析装置 :放流前の調整水質を計測し

そのデータ取得と記録

このような装置で処理した上で初めて「上下水道 企業団」の許可を得て「同企業団」へ放流し、さら に総合調整(科学公園都市全体)されて「千種川」 へと放流される。実験者の皆様にあってはこのよう な事情をご配慮の上取扱いに注意を要する物質とそ の排水につきましては、「SPring-8における安全の 手引」を参照の上で実験をおこなっていただきたい と思います(原則として、実験終了後の試薬および 2次洗浄水までの濃厚廃液は各自責任をもって持ち 帰り下さい。

参考までに、平成10年迄に使用できる化学薬品は 以下のものです。

「カドミウム及びその化合物」「鉛及びその化合 物」「銅及びその化合物」「亜鉛及びその化合物」 「鉄及びその化合物」「セレン及びその化合物」「マ ンガン及びその化合物」「フッ素化合物」「ヒ素及び その化合物」「フェノール類」「トリクロロエチレン」 「テトラクロロエチレン」「ジクロロメタン」「四塩 化炭素」「1,2ジクロロエタン」「1,1ジクロロエチレ ン」「シス・1,2ジクロロエチレン」「1,1,1トリクロ ロエタン」「1,1,2トリクロロエタン」「1,3ジクロロ プロペン」「ベンゼン」

(3) RI廃液処理装置

RI(放射性同位元素)を用いた実験を行う場合、 放射線による外部被爆もさることながら放射性物質 による汚染や内部被爆に、より重点をおいた管理が 必要となる。このため、その実験に供するRI実験棟 が設置されている。

棟内の実験エリアは放射線管理区域とし、物理的 にも他のエリアと区画されているだけでなく、空 調・排気・排水の各系統も他から独立させて汚染の 拡大を防ぐよう配慮されたものとなっている。その 管理区域内から発生する排水は、予めその放射能濃 度を測定し排水基準を満たすような処理を講じなけ ればSPring-8施設の外へ放流出来ない。当初はRI実 験棟内で発生する廃液のみに限定して設計をした が、その後SPring-8施設内全体の放射性廃液の処理 をも処理可能なものに設計変更した。その処理能力 は、ドレン水系で90m³/年(8時間/日 稼働)・ 実験水系で32.4m3/年(8時間/日 稼働)と小規 模である。なお、その処理水濃度は、おおよそ10万 分の1に低減され、一方濃縮液については100倍の濃 度に濃縮される設計である。

(4)マシン冷却設備

このマシン冷却設備は、熱負荷機器の熱除去と電 気的な絶縁を兼ねて一次冷却水に純水を用いた設備 であり、マシン直結のものである。

精密温度制御部 (線型加速器冷却設備)

この精密温度制御部とは、SPring-8の入射系マシ ンに属する線型加速器の熱負荷機器を冷却する設備 の総称であり、その要求される温度制御レベルの違 いにより、精密温調系と非温調系の2系に大別され る。

精密温調系とは、線型加速器の加速管本体を冷却 する系統であり、温度制御精度についてその設定温 度の±0.1 (27.5 ~30.5 の任意の温度において) という精度が要求されるものでありこの名称があ る。冷凍機及び電気ヒータの容量制御を応用し、27 台の加速管を15グループに分けて各々個別に温度管 理をしている。個別電気ヒータの制御方式は、ヒー タ入口側の温度検出器で得た情報でヒータ上昇温度 の予測を行うと同時に出口側の温度検出器で得た情 報も用いて演算を行っており、フィードフォワード 制御である。この温度検出センサーについては常温 付近での精度を±0.03 とする製品をメーカーと共 同で開発しこれを使用した。また急激な温度負荷変 動に対し設定温度精度の安定化対策としては、クッ ションタンクを設置しその温度変動を平滑化させ た。尚、これらの精密温度制御方式により温度安定 達成時間の大幅な短縮が出来た。このことにより、 1日2回の出射タイミング以外の線型加速器の多目的 利用(例=ニュースバル計画、加速器・ビームライ ンR&D実験)の際に時間的余裕を持って対応する ことができる。

非温調系とは、温度制御精度が汎用技術の範囲で あり、取り立てて目新しさはない標準的冷却設備で ある。

シンクロトロン冷却設備

この冷却設備は、シンクロトロン電磁石・電磁石 電源・高周波加速空洞・SSBT電磁石の各系統を直 接冷却する系統とクライストロン冷却系・クライス トロンコレクタ部冷却系を間接的に冷却する系統に 分けて構成されている。

この冷却設備は、温度制御精度が汎用技術の範囲 であり、特筆するものはない。但し、周長約400m と長くて曲率を持った配管の熱膨張収縮対策として ビクトリックジョイントと呼ばれる内圧利用の自己 シールジョイントを採用しており、工法及び使用機

器としては目新しいものである。この結果、従来使 用のエキスパンションジョイント以上の効能が認め られた。これによりスペースの削減と曲率対応が簡 便に出来、配管を直管のまま使用できるという結果 が得られた。尚、この冷却設備の温度制御精度は、 35 ±5 と比較的楽なマシンニーズであり完全に 満足されている。

3. あとがき

守備範囲の広範にわたる施設管理部門であります が、担当者一同研究支援という責務を認識し、24時 間体制で管理運営を行っております。

今後は、ユーザーサービスも計画をしております ので、供用開始後には尚一層の協力体制をと心掛け ております。

市原 正弘 ICHIHARA Masahiro 昭和16年1月21日生 JASRI施設管理部門 〒678-12 兵庫県赤穂郡上郡町

SPring-8リング棟B1 施設管理部門

TEL: 07915-8-0813 FAX: 07915-8-0876

略歴:昭和35年県立水戸工業高校機械科

卒、日本原子力研究所研究炉管理部研究用原子炉の建設プロジェ クト、運転維持管理とその改造計画に25年従事。原子炉の共同利 用等協力に5年、原子力船「むつ」の原子炉立ち上げを希望しそ の機能試験に従事、完成後原研大型放射光施設開発部にて共通設 備の設計とその施工管理に従事。共同チーム施設管理グループリ ーダーを経て、現JASRI施設管理部門次長。趣味:空を飛ぶ事と その機体製作。奇人変人の一人。